• Title/Summary/Keyword: mining products

Search Result 311, Processing Time 0.023 seconds

Online Social Media Review Mining for Living Items with Probabilistic Approach: A Case Study

  • Li, Shuai;Hao, Fei;Kim, Hee-Cheol
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.20-27
    • /
    • 2013
  • The concept of social media is top of the agenda for many business executives and decision makers, as well as consultants try to identify ways where companies can make profitable use of applications such as Netflix, Flixster. The social media is playing an increasingly important role as the information sources for customers making product choices etc. With the flourish of Web 2.0 technology, customer reviews are becoming more and more useful and important information resources for people to save their time and energy on purchasing products that they want. This paper proposes the Bayesian Probabilistic Classification algorithm to mine the social media review, and evaluates it by different splits and cross validation mechanism from the real data set. The explored study experimental results show the robustness and effectiveness of proposed approach for mining the social media review.

  • PDF

Designing Cost Effective Open Source System for Bigdata Analysis (빅데이터 분석을 위한 비용효과적 오픈 소스 시스템 설계)

  • Lee, Jong-Hwa;Lee, Hyun-Kyu
    • Knowledge Management Research
    • /
    • v.19 no.1
    • /
    • pp.119-132
    • /
    • 2018
  • Many advanced products and services are emerging in the market thanks to data-based technologies such as Internet (IoT), Big Data, and AI. The construction of a system for data processing under the IoT network environment is not simple in configuration, and has a lot of restrictions due to a high cost for constructing a high performance server environment. Therefore, in this paper, we will design a development environment for large data analysis computing platform using open source with low cost and practicality. Therefore, this study intends to implement a big data processing system using Raspberry Pi, an ultra-small PC environment, and open source API. This big data processing system includes building a portable server system, building a web server for web mining, developing Python IDE classes for crawling, and developing R Libraries for NLP and visualization. Through this research, we will develop a web environment that can control real-time data collection and analysis of web media in a mobile environment and present it as a curriculum for non-IT specialists.

Topic Modeling-based QFD Framework for Comparative Analysis between Competitive Products (경쟁 제품 간 비교 분석을 위한 토픽 모델링 기반 품질기능전개 프레임워크)

  • Chenghe Cui;Uk Jung
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.701-713
    • /
    • 2023
  • Purpose: The primary purpose of this study is to integrate text mining and Quality Function Deployment (QFD) to automatically extract valuable information from customer reviews, thereby establishing a QFD frame- work to confirm genuine customer needs for New Product Development (NPD). Methods: Our approach combines text mining and QFD through topic modeling and sentiment analysis on a large data set of 56,873 customer reviews from Zappos.com, spanning five running shoe brands. This process objectively identifies customer requirements, establishes priorities, and assesses competitive strengths. Results: Through the analysis of customer reviews, the study successfully extracts customer requirements and translates customer experience insights and emotions into quantifiable indicators of competitiveness. Conclusion: The findings obtained from this research offer essential design guidance for new product develop- ment endeavors. Importantly, the significance of these results extends beyond the running shoe industry, presenting broad and promising applications across diverse sectors.

Analyzing Production Data using Data Mining Techniques (데이터마이닝 기법의 생산공정데이터에의 적용)

  • Lee H.W.;Lee G.A.;Choi S.;Bae K.W.;Bae S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.143-146
    • /
    • 2005
  • Many data mining techniques have been proved useful in revealing important patterns from large data sets. Especially, data mining techniques play an important role in a customer data analysis in a financial industry and an electronic commerce. Also, there are many data mining related research papers in a semiconductor industry and an automotive industry. In addition, data mining techniques are applied to the bioinformatics area. To satisfy customers' various requirements, each industry should develop new processes with more accurate production criteria. Also, they spend more money to guarantee their products' quality. In this manner, we apply data mining techniques to the production-related data such as a test data, a field claim data, and POP (point of production) data in the automotive parts industry. Data collection and transformation techniques should be applied to enhance the analysis results. Also, we classify various types of manufacturing processes and proposed an analysis scheme according to the type of manufacturing process. As a result, we could find inter- or intra-process relationships and critical features to monitor the current status of the each process. Finally, it helps an industry to raise their profit and reduce their failure cost.

  • PDF

Status and Strategy on Recycling of Domestic Used Chemical Catalysts (국내 사용 후 화학촉매제품의 재자원화 현황 및 향후 방향)

  • Kim, Young-Chun;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.3-16
    • /
    • 2017
  • Chemical catalyst products are applied to various fields such as petrochemical process, air pollution prevention facility and automobile exhaust gas purifier. The domestic and overseas chemical catalyst market is increasing every year, and the amount of waste catalyst generated thereby is also increasing. Most of the used chemical catalyst products, such as desulfurized waste catalysts and automobile waste catalysts containing valuable metals are important recyclable resources from a substitute resource point of view. The recycling processes for recovering valuable metals have been commercialized through some urban mining companies, and SCR denitration catalysts have been recycled through some remanufacturing companies. In this paper, the amount of domestic production and recycling of major catalyst products have thus been investigated and analyzed so as to be used as basic data for establishing industrial support policy for recycling of used chemical catalyst products. Also tasks for promoting the recycling of used chemical catalyst products are suggested.

Inter-category Map: Building Cognition Network of General Customers through Big Data Mining

  • Song, Gil-Young;Cheon, Youngjoon;Lee, Kihwang;Park, Kyung Min;Rim, Hae-Chang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.583-600
    • /
    • 2014
  • Social media is considered a valuable platform for gathering and analyzing the collective and subconscious opinions of people in Internet and mobile environments, where they express, explicitly and implicitly, their daily preferences for brands and products. Extracting and tracking the various attitudes and concerns that people express through social media could enable us to categorize brands and decipher individuals' cognitive decision-making structure in their choice of brands. We investigate the cognitive network structure of consumers by building an inter-category map through the mining of big data. In so doing, we create an improved online recommendation model. Building on economic sociology theory, we suggest a framework for revealing collective preference by analyzing the patterns of brand names that users frequently mention in the online public sphere. We expect that our study will be useful for those conducting theoretical research on digital marketing strategies and doing practical work on branding strategies.

Fabrication of Cu-Zn Alloy Nano Powders by Wire Explosion of Electrodeposited Wires (도금선재의 전기선폭발을 이용한 Cu-Zn 합금 나노분말 제조)

  • Kim, Won-Baek;Park, Je-Shin;Suh, Chang-Yeul;Lee, Jae-Chun;Oh, Yong-Jun;Mun, Jeong-Il
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.38-43
    • /
    • 2007
  • Cu-Zn alloy nano powders were fabricated by the electrical explosion of Zn-electroplated Cu wire along with commercial brass wire. The powders exploded from brass wire were composed mainly of ${\alpha},{\beta},\;and\;{\gamma}$ phases while those from electroplated wires contained additional Zn-rich phases as ${\varepsilon}$, and Zn. In case of Zn-elec-troplated Cu wire, the mixing time of the two components during explosion might not be long enough to solidify as the phases of lower Zn content. This along with the high vapor pressure of Zn appears to be the reason for the observed shift of explosion products towards the high-Zn phases in electroplated wire system.

Competitive intelligence in Korean Ramen Market using Text Mining and Sentiment Analysis

  • Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.155-166
    • /
    • 2018
  • These days, online media, such as blogospheres, online communities, and social networking sites, provides the uncountable user-generated content (UGC) to discover market intelligence and business insight with. The business has been interested in consumers, and constantly requires the approach to identify consumers' opinions and competitive advantage in the competing market. Analyzing consumers' opinion about oneself and rivals can help decision makers to gain in-depth and fine-grained understanding on the human and social behavioral dynamics underlying the competition. In order to accomplish the comparison study for rival products and companies, we attempted to do competitive analysis using text mining with online UGC for two popular and competing ramens, a market leader and a market follower, in the Korean instant noodle market. Furthermore, to overcome the lack of the Korean sentiment lexicon, we developed the domain specific sentiment dictionary of Korean texts. We gathered 19,386 pieces of blogs and forum messages, developed the Korean sentiment dictionary, and defined the taxonomy for categorization. In the context of our study, we employed sentiment analysis to present consumers' opinion and statistical analysis to demonstrate the differences between the competitors. Our results show that the sentiment portrayed by the text mining clearly differentiate the two rival noodles and convincingly confirm that one is a market leader and the other is a follower. In this regard, we expect this comparison can help business decision makers to understand rich in-depth competitive intelligence hidden in the social media.

Development of a Personalized Recommendation Procedure Based on Data Mining Techniques for Internet Shopping Malls (인터넷 쇼핑몰을 위한 데이터마이닝 기반 개인별 상품추천방법론의 개발)

  • Kim, Jae-Kyeong;Ahn, Do-Hyun;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.177-191
    • /
    • 2003
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering is the most successful recommendation technology. Web usage mining and clustering analysis are widely used in the recommendation field. In this paper, we propose several hybrid collaborative filtering-based recommender procedures to address the effect of web usage mining and cluster analysis. Through the experiment with real e-commerce data, it is found that collaborative filtering using web log data can perform recommendation tasks effectively, but using cluster analysis can perform efficiently.

  • PDF

Method for Preference Score Based on User Behavior (웹 사이트 이용 고객의 행동 정보를 기반으로 한 고객 선호지수 산출 방법)

  • Seo, Dong-Yal;Kim, Doo-Jin;Yun, Jeong-Ki;Kim, Jae-Hoon;Moon, Kang-Sik;Oh, Jae-Hoon
    • CRM연구
    • /
    • v.4 no.1
    • /
    • pp.55-68
    • /
    • 2011
  • Recently with the development of Web services by utilizing a variety of web content, the studies on user experience and personalization based on web usage has attracted much attention. Majority of personalized analysis are have been carried out based on existing data, primarily using the database and statistical models. These approaches are difficult to reflect in a timely mannerm, and are limited to reflect the true behavioral characteristics because the data itself was just a result of customers' behaviors. However, recent studies and commercial products on web analytics try to track and analyze all of the actions from landing to exit to provide personalized service. In this study, by analyzing the customer's click-stream behaviors, we define U-Score(Usage Score), P-Score (Preference Score), M-Score(Mania Score) to indicate variety of customer preferences. With the devised three indicators, we can identify the customer's preferences more precisely, provide in-depth customer reports and customer relationship management, and utilize personalized recommender services.

  • PDF