DOI QR코드

DOI QR Code

Topic Modeling-based QFD Framework for Comparative Analysis between Competitive Products

경쟁 제품 간 비교 분석을 위한 토픽 모델링 기반 품질기능전개 프레임워크

  • Chenghe Cui (School of Business, Dongguk University) ;
  • Uk Jung (School of Business, Dongguk University)
  • 최승혁 (동국대학교 경영학부) ;
  • 정욱 (동국대학교 경영학부)
  • Received : 2023.11.28
  • Accepted : 2023.12.05
  • Published : 2023.12.31

Abstract

Purpose: The primary purpose of this study is to integrate text mining and Quality Function Deployment (QFD) to automatically extract valuable information from customer reviews, thereby establishing a QFD frame- work to confirm genuine customer needs for New Product Development (NPD). Methods: Our approach combines text mining and QFD through topic modeling and sentiment analysis on a large data set of 56,873 customer reviews from Zappos.com, spanning five running shoe brands. This process objectively identifies customer requirements, establishes priorities, and assesses competitive strengths. Results: Through the analysis of customer reviews, the study successfully extracts customer requirements and translates customer experience insights and emotions into quantifiable indicators of competitiveness. Conclusion: The findings obtained from this research offer essential design guidance for new product develop- ment endeavors. Importantly, the significance of these results extends beyond the running shoe industry, presenting broad and promising applications across diverse sectors.

Keywords

References

  1. Ahani, A., Nilashi, M., Yadegaridehkordi, E., Sanzogni, L., Tarik, A. R., Knox, K., and Ibrahim, O. 2019. Revealing customers' satisfaction and preferences through online review analysis: The case of Canary Islands hotels. Journal of Retailing and Consumer Services 51:331-343.  https://doi.org/10.1016/j.jretconser.2019.06.014
  2. Armacost, R. L., Componation, P. J., Mullens, M. A., and Swart, W. W. 1994. An AHP framework for prioritizing customer requirements in QFD: an industrialized housing application. IIE transactions 26(4):72-79.  https://doi.org/10.1080/07408179408966620
  3. Asadabadi, M. R., Saberi, M., Sadghiani, N. S., Zwikael, O., and Chang, E. 2023. Enhancing the analysis of online product reviews to support product improvement: integrating text mining with quality function deployment. Journal of Enterprise Information Management 36(1):275-302.  https://doi.org/10.1108/JEIM-03-2021-0143
  4. Bayraktaroglu, G., and Ozgen, O. (2008). Integrating the Kano model, AHP and planning matrix: QFD application in library services. Library Management, 29(4/5):327-351.  https://doi.org/10.1108/01435120810869110
  5. Berezina, K., Bilgihan, A., Cobanoglu, C., and Okumus, F. 2016. Understanding satisfied and dissatisfied hotel customers: text mining of online hotel reviews. Journal of Hospitality Marketing and Management 25(1):1-24.  https://doi.org/10.1080/19368623.2015.983631
  6. Blei, D. M., Ng, A. Y., and Jordan, M. I. 2003. Latent dirichlet distribution. J. Mach. Learn. Res, 3, 993-1022. 
  7. Buyukozkan, G., Feyzioglu, O., and Ruan, D. 2007. Fuzzy group decision-making to multiple preference formats in quality function deployment. Computers in Industry, 58(5):392-402.  https://doi.org/10.1016/j.compind.2006.07.002
  8. Culotta, A., and Cutler, J. 2016. Mining brand perceptions from twitter social networks. Marketing science, 35(3):343-362.  https://doi.org/10.1287/mksc.2015.0968
  9. Dave, K., Lawrence, S. and Pennock, D.M. 2003. Mining the peanut gallery: opinion extraction and semantic classification of product reviews. Paper presented at the Proceedings of the 12th International Conference on World Wide Web. 
  10. Griffin, A., and Hauser, J. R. 1992. Patterns of communication among marketing, engineering and manufacturing-A comparison between two new product teams. Management Science 38(3):360-373.  https://doi.org/10.1287/mnsc.38.3.360
  11. Griffin, A., and Hauser, J. R. 1993. The voice of the customer. Marketing Science 12(1):1-27.  https://doi.org/10.1287/mksc.12.1.1
  12. Hauser, J. R. 1993. How Puritan-Bennett used the house of quality. MIT Sloan Management Review 34(3):61. 
  13. Hauser, J. R. and Clausing, D. 1998. The house of quality. Harvard Bus. Rev., 66(5/6):63-73. 
  14. He, W., Tian, X., and Wang, F. K. 2019. Innovating the customer loyalty program with social media: A case study of best practices using analytics tools. Journal of Enterprise Information Management 32(5):807-823.  https://doi.org/10.1108/JEIM-10-2018-0224
  15. He, W., Zhang, W., Tian, X., Tao, R., and Akula, V. 2019. Identifying customer knowledge on social media through data analytics. Journal of Enterprise Information Management 32(1):152-169.  https://doi.org/10.1108/JEIM-02-2018-0031
  16. Huang, S., Zhang, J., Yang, C., Gu, Q., Li, M., and Wang, W. (2022). The interval grey QFD method for new product development: Integrate with LDA topic model to analyze online reviews. Engineering Applications of Artificial Intelligence 114:105213. 
  17. Jayaswal, B., Patton, P., and Zultner, R. 2007) The design for trustworthy software compilation understanding customer needs: Software QFD and the voice of the customer. Prentice Hall Press. 
  18. Kang, S. W., and Tucker, C. S. 2016. Automated mapping of product features mined from online customer reviews to engineering product characteristics. In International design engineering technical conferences and computers and information in engineering conference (Vol. 50084, p. V01BT02A023). American Society of Mechanical Engineers. 
  19. Karsak, E. E. 2004. Fuzzy multiple objective programming framework to prioritize design requirements in quality function deployment. Computers and Industrial Engineering 47(2-3):149-163.  https://doi.org/10.1016/j.cie.2004.06.001
  20. Liu, H. T. 2011. Product design and selection using fuzzy QFD and fuzzy MCDM approaches. Applied Mathematical Modelling 35(1):482-496.  https://doi.org/10.1016/j.apm.2010.07.014
  21. Medhat, W., Hassan, A., and Korashy, H. 2014. Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal 5(4):1093-1113.  https://doi.org/10.1016/j.asej.2014.04.011
  22. Ni, M., Xu, X., and Deng, S. 2007. Extended QFD and data-mining-based methods for supplier selection in mass customization. International Journal of Computer Integrated Manufacturing 20(2-3):280-291.  https://doi.org/10.1080/09511920601150651
  23. Park, Y., and Lee, S. 2011. How to design and utilize online customer center to support new product concept generation. Expert Systems with Applications 38(8):10638-10647.  https://doi.org/10.1016/j.eswa.2011.02.125
  24. Pathan, A. F., and Prakash, C. 2021. Unsupervised aspect extraction algorithm for opinion mining using topic modeling. Global Transitions Proceedings 2(2):492-499.  https://doi.org/10.1016/j.gltp.2021.08.005
  25. Singh, A., Jenamani, M., and Thakkar, J. 2020) Do online consumer reviews help to evaluate the performance of automobile manufacturers? Journal of Enterprise Information Management 33(5):1153-1198.  https://doi.org/10.1108/JEIM-09-2019-0292
  26. Sullivan, L. P. 1986. Quality function deployment. Quality Progress (ASQC), 39-50. 
  27. Tu, N., Zhang, T., He, Q., Zhang, H., and Li, Y. 2011. Applying combined AHP-QFD method in new product development: A case study in developing new sports earphone. In MSIE 2011 (pp. 80-85). IEEE.
  28. Vamshi, K. B., Pandey, A. K., and Siva, K. A. 2018. Topic model based opinion mining and sentiment analysis. In 2018 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-4). IEEE. 
  29. Wang, W., Feng, Y., and Dai, W. 2018. Topic analysis of online reviews for two competitive products using latent Dirichlet allocation. Electronic Commerce Research and Applications 29:142-156.  https://doi.org/10.1016/j.elerap.2018.04.003
  30. Wang, Y. M., and Chin, K. S. 2011. A linear goal programming approach to determining the relative importance weights of customer requirements in quality function deployment. Information Sciences 181(24):5523-5533.  https://doi.org/10.1016/j.ins.2011.08.016
  31. Yang, C., Cheng, J., and Wang, X. 2019. Hybrid quality function deployment method for innovative new product design based on the theory of inventive problem solving and Kansei evaluation. Advances in Mechanical Engineering 11(5):1687814019848939. 
  32. Yazdani, M., Kahraman, C., Zarate, P., and Onar, S. C. 2019. A fuzzy multi attribute decision framework with integration of QFD and grey relational analysis. Expert Systems with Applications 115:474-485.  https://doi.org/10.1016/j.eswa.2018.08.017
  33. Yousefie, S., Mohammadi, M., and Monfared, J. H. 2011. Selection effective management tools on setting European Foundation for Quality Management (EFQM) model by a quality function deployment (QFD) approach. Expert Systems with Applications 38(8):9633-9647.  https://doi.org/10.1016/j.eswa.2011.01.166
  34. Zhan, J., Loh, H. T., and Liu, Y. 2008. Summarizing online customer reviews automatically based on topical structure. In Web Information Systems and Technologies: Third International Conference, WEBIST 2007, Barcelona, Spain, March 3-6, 2007, Revised Selected Papers 3 (pp. 245-256). Springer Berlin Heidelberg. 
  35. Zhang, W., Xu, H., and Wan, W. 2012. Weakness Finder: Find product weakness from Chinese reviews by using aspects based sentiment analysis. Expert Systems with Applications 39(11):10283-10291.  https://doi.org/10.1016/j.eswa.2012.02.166
  36. Zhao, K., Liu, B., Tirpak, T. M., and Xiao, W. 2005. Opportunity map: a visualization framework for fast identification of actionable knowledge. In Proceedings of the 14th ACM international conference on Information and knowledge management (pp. 60-67).