• Title/Summary/Keyword: minimum cost design

Search Result 410, Processing Time 0.028 seconds

Optimum Design of Steel Box Girder Considering Dynamic Characteristics of LRT with Rubber Wheel (경량전철 고무차륜 AGT 하중의 동적특성을 고려한 강박스거더의 단면 최적설계)

  • Lee Hee-Up;Lee Jun S.;Bang Choon-seok;Choi Il-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1197-1204
    • /
    • 2004
  • The metropolitan cities and operation companies of urban transit railway are driving to construct the LRT(light rail transit) system because of the advantage of construction cost and environmental serviceability. This study suggests the optimal design method of steel box girder considering dynamic characteristics of LRT with rubber wheel. The behavior and design constraints are formulated based on the structural design criteria for LRT. Genetic algorithm is applied to the minimum weight design of structural system. A typical example is solved to illustrate the applicability of the proposed minimization algorithm. From the results of application example, the optimum design of steel box girder is successfully accomplished. Therefore, this system can act as a consultant to assist novice designers in the design of steel box girder for LRT with rubber wheel.

  • PDF

Optimal Design of a Washer using a Response Surface Method (반응표면분석법을 이용한 세탁기의 최적설계)

  • Han, Hyeong-Seok;Kim, Tae-Yeong;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1871-1877
    • /
    • 1999
  • An optimal design method using a response surface method for dynamic characteristics of a washer is presented. The proposed method uses the design of experiment and a computer model is used for the experiment. The value of the cost function is estimated using a computer model for each case of the design variable variation. An orthogonal array is used to obtain best cases to be considered with minimum number of experimentation. Using these experimental values, optimal design is performed using a response surface method. The method used in this paper can be applied to any complicated mechanical systems that can be modelled and analyzed by a computer program. The method is applied to the design of dynamic characteristics of a washer.

A Study of Efficient Algorithm for Survivable Network Design with Conduit (관로가 있는 생존가능망 설계에 관한 효율적인 알고리즘 연구)

  • Kang, Hyo-Kwan;Han, Chi-Geun
    • The KIPS Transactions:PartC
    • /
    • v.8C no.5
    • /
    • pp.629-636
    • /
    • 2001
  • Network is changed from voice-based network into multimedia-based network by development of communication technology and multimedia service. We need a large bandwidth for multimedia service. The optical fiber is a more suitable medium than existing copper-based cable for large bandwidth. But, it is so expensive than copper-based cable. So, Minimizing total cost becomes a more important concept. In order to construct a minimum cost network, we have to consider existing conduits in network. On the other hand, optical fiber network allows that larger amount of traffic can be transmitted than copper-based network does. However, a failure of a node or link can make a serious damage to the network service. Thus, we have to get multiple paths to support continuous service even if a loss of failure occurs in some point of the network. The network survivability problem is to design the network that can provide reliable service to customers anytime with minimum total cost. In an existing solution of the network survivability problem with conduits, a conduit is considered only one time. But, the conduit is reusable if the network satisfies the required survivability. Proposed algorithm can more effectively considered already existed conduit. Network survivability and edge cost is predetermined. The proposed algorithm finds the best solution by conduit sharing within the limits of network survivability. According to the simulation result, the proposed method can decrease 7% of total cost than an existing method by effective conduits adaption.

  • PDF

Cogging Torque Reduction in AFPM Generator Design for Small Wind Turbines (소형 풍력발전기용 AFPM 발전기 코깅토크 저감 설계)

  • Chung, Dae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1820-1827
    • /
    • 2012
  • This paper is to present a new method of cogging torque reduction for axial flux PM machines of multiple rotor surface mounted magnets. In order to start softly and to run a power generator even the case of weak wind power, reduction of cogging torque is one of the most important issues for a small wind turbine, Cogging torque is an inherent characteristic of PM machines and is caused by the geometry shape of the machine. Several methods have been already applied for reducing the cogging torque of conventional radial flux PM machines. Even though some of these techniques can be also applied to axial flux machines, manufacturing cost is especially higher due to the unique construction of the axial flux machine stator. Consequently, a simpler and low cost method is proposed to apply on axial flux PM machines. This new method is actually applied to a generator of 1.0kW, 16-poles axial flux surface magnet disc type machine with double-rotor-single-stator for small wind turbine. Design optimization of the adjacent magnet pole-arc which results in minimum cogging torque as well as assessment of the effect on the maximum available torque using 3D Finite Element Analysis (FEA) is investigated in this design. Although the design improvement is intended for small wind turbines, it is also applicable to larger wind turbines.

Teaching learning-based optimization for design of cantilever retaining walls

  • Temur, Rasim;Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.763-783
    • /
    • 2016
  • A methodology based on Teaching Learning-Based Optimization (TLBO) algorithm is proposed for optimum design of reinforced concrete retaining walls. The objective function is to minimize total material cost including concrete and steel per unit length of the retaining walls. The requirements of the American Concrete Institute (ACI 318-05-Building code requirements for structural concrete) are considered for reinforced concrete (RC) design. During the optimization process, totally twenty-nine design constraints composed from stability, flexural moment capacity, shear strength capacity and RC design requirements such as minimum and maximum reinforcement ratio, development length of reinforcement are checked. Comparing to other nature-inspired algorithm, TLBO is a simple algorithm without parameters entered by users and self-adjusting ranges without intervention of users. In numerical examples, a retaining wall taken from the documented researches is optimized and the several effects (backfill slope angle, internal friction angle of retaining soil and surcharge load) on the optimum results are also investigated in the study. As a conclusion, TLBO based methods are feasible.

Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method

  • Rafiee, A.;Talatahari, S.;Hadidi, A.
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.431-451
    • /
    • 2013
  • The Big Bang-Big Crunch (BB-BC) optimization algorithm is developed for optimal design of non-linear steel frames with semi-rigid beam-to-column connections. The design algorithm obtains the minimum total cost which comprises total member plus connection costs by selecting suitable sections. Displacement and stress constraints together with the geometry constraints are imposed on the frame in the optimum design procedure. In addition, non-linear analyses considering the P-${\Delta}$ effects of beam-column members are performed during the optimization process. Three design examples with various types of connections are presented and the results show the efficiency of using semi-rigid connection models in comparing to rigid connections. The obtained optimum semi-rigid frames are more economical solutions and lead to more realistic predictions of response and strength of the structure.

Optimum Plastic Design Method of Grillages under Uniformly Distributed Lateral Loads and Axial Forces (균일 분포 횡하중 및 축하중을 받는 격자형 구조물의 최적 소성설계법)

  • Chung, T.J.;Kim, K.S.;Park, Y.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.56-64
    • /
    • 1996
  • In this study, a review is made of the previous work(Ref. 1 and 5) for the development of the limit design method of the flat rectangular grillages under the lateral pressure. And the effect of the in-plane loads on the collapse theory is considered. The main part of the work is devoted in developing the standard design method of grillages under the criteria of minimum weight and minimum cost. In the final part, it was shown that Pareto solution methods can be easily applied to structural optimization with the multiple objectives, and the designer can have an appropriate choice from those Pareto optimal solutions.

  • PDF

Design of 2D MUSIC Algorithm to Reduce Computational Burden (연산량 감소를 위한 2D MUSIC 알고리즘 설계)

  • Choi, Yun Sub;Jin, Mi Hyun;Choi, Heon Ho;Lee, Sang Jeong;Park, Chansik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1077-1083
    • /
    • 2012
  • The jamming countermeasures in GNSS includes anti-jamming technique and jammer localization technique. In both techniques, direction of jamming signal is important and generally the MUSIC algorithm is used to find the direction of jamming signal. The MUSIC is super-resolution algorithm for detecting incident direction of signal. But, the search time of MUSIC algorithm is too long because all candidates of incidence angle are searched. This paper proposes the new method that has less computational burdens and therefore faster than the conventional MUSIC algorithm. The proposed method improves performance speed by reducing unnecessary calculations. In the proposed method, the cost function of conventional MUSIC algorithm is decomposed into the sum of squares and if the partial sum of cost function is larger than the minimum cost function so far, then the candidate is rejected and next candidates are searched. If the computed cost function is less than the minimum cost function so far, the minimum cost function so far is replaced with newly computed value. The performance of the proposed method was compared with the conventional MUSIC algorithm using the simulation. The accuracy of the estimaed direction of jamming signal was same as the conventional MUSIC while the search speed of the proposed method was 1.15 times faster than the conventional MUSIC.

A Suggestion of a Target Costing Concept for Optimal Building Design (적정 건물 설계를 위한 Target Costing 개념 제안)

  • Ahn, Joon-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.137-143
    • /
    • 2010
  • Target Costing is a modern cost management technique used in changeable market conditions. The target cost is set by subtracting the sum of production costs and profits from the market price. The purpose of this present study is to review Target Costing as a useful concept which integrates the project development process with cost management. "Minimum Waste, Maximum Value" could be achieved by setting up guidelines for optimal building design at the beginning of the project development phase. This effective budget management method will help rectify Korea's overspending problems in the area of government building construction projects.

Optimal Switching Frequency in Limited-Cycle with Multiple Periods

  • Sun, Jing;Yamamoto, Hisashi;Matsui, Masayuki;Kong, Xianda
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.1
    • /
    • pp.48-53
    • /
    • 2012
  • Due to the customer needs of reducing cost and delivery date shorting, prompt change in the production plan became more important. In the multi period system (For instance, production line.) where target processing time exists, production, idle and delay risks occur repeatedly for multiple periods. In such situations, delay of one process may influence the delivery date of an entire process. In this paper, we discuss the minimum expected cost of the case mentioned above, where the risk depends on the previous situation and occurs repeatedly for multiple periods. This paper considers the optimal switching frequency to minimize the total expected cost of the production process. In this paper, first, the optimal switching frequency model is proposed. Next, the mathematic formulation of the total expectation is presented. Finally, the policy of optimal switching frequency is investigated by numerical experiments.