• Title/Summary/Keyword: minimax concave penalty (MCP)

Search Result 4, Processing Time 0.015 seconds

An Additive Sparse Penalty for Variable Selection in High-Dimensional Linear Regression Model

  • Lee, Sangin
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.147-157
    • /
    • 2015
  • We consider a sparse high-dimensional linear regression model. Penalized methods using LASSO or non-convex penalties have been widely used for variable selection and estimation in high-dimensional regression models. In penalized regression, the selection and prediction performances depend on which penalty function is used. For example, it is known that LASSO has a good prediction performance but tends to select more variables than necessary. In this paper, we propose an additive sparse penalty for variable selection using a combination of LASSO and minimax concave penalties (MCP). The proposed penalty is designed for good properties of both LASSO and MCP.We develop an efficient algorithm to compute the proposed estimator by combining a concave convex procedure and coordinate descent algorithm. Numerical studies show that the proposed method has better selection and prediction performances compared to other penalized methods.

Sparse vector heterogeneous autoregressive model with nonconvex penalties

  • Shin, Andrew Jaeho;Park, Minsu;Baek, Changryong
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.53-64
    • /
    • 2022
  • High dimensional time series is gaining considerable attention in recent years. The sparse vector heterogeneous autoregressive (VHAR) model proposed by Baek and Park (2020) uses adaptive lasso and debiasing procedure in estimation, and showed superb forecasting performance in realized volatilities. This paper extends the sparse VHAR model by considering non-convex penalties such as SCAD and MCP for possible bias reduction from their penalty design. Finite sample performances of three estimation methods are compared through Monte Carlo simulation. Our study shows first that taking into cross-sectional correlations reduces bias. Second, nonconvex penalties performs better when the sample size is small. On the other hand, the adaptive lasso with debiasing performs well as sample size increases. Also, empirical analysis based on 20 multinational realized volatilities is provided.

Moderately clipped LASSO for the high-dimensional generalized linear model

  • Lee, Sangin;Ku, Boncho;Kown, Sunghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.445-458
    • /
    • 2020
  • The least absolute shrinkage and selection operator (LASSO) is a popular method for a high-dimensional regression model. LASSO has high prediction accuracy; however, it also selects many irrelevant variables. In this paper, we consider the moderately clipped LASSO (MCL) for the high-dimensional generalized linear model which is a hybrid method of the LASSO and minimax concave penalty (MCP). The MCL preserves advantages of the LASSO and MCP since it shows high prediction accuracy and successfully selects relevant variables. We prove that the MCL achieves the oracle property under some regularity conditions, even when the number of parameters is larger than the sample size. An efficient algorithm is also provided. Various numerical studies confirm that the MCL can be a better alternative to other competitors.

High-dimensional linear discriminant analysis with moderately clipped LASSO

  • Chang, Jaeho;Moon, Haeseong;Kwon, Sunghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.21-37
    • /
    • 2021
  • There is a direct connection between linear discriminant analysis (LDA) and linear regression since the direction vector of the LDA can be obtained by the least square estimation. The connection motivates the penalized LDA when the model is high-dimensional where the number of predictive variables is larger than the sample size. In this paper, we study the penalized LDA for a class of penalties, called the moderately clipped LASSO (MCL), which interpolates between the least absolute shrinkage and selection operator (LASSO) and minimax concave penalty. We prove that the MCL penalized LDA correctly identifies the sparsity of the Bayes direction vector with probability tending to one, which is supported by better finite sample performance than LASSO based on concrete numerical studies.