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Abstract
The least absolute shrinkage and selection operator (LASSO) is a popular method for a high-dimensional

regression model. LASSO has high prediction accuracy; however, it also selects many irrelevant variables. In
this paper, we consider the moderately clipped LASSO (MCL) for the high-dimensional generalized linear model
which is a hybrid method of the LASSO and minimax concave penalty (MCP). The MCL preserves advantages
of the LASSO and MCP since it shows high prediction accuracy and successfully selects relevant variables. We
prove that the MCL achieves the oracle property under some regularity conditions, even when the number of
parameters is larger than the sample size. An efficient algorithm is also provided. Various numerical studies
confirm that the MCL can be a better alternative to other competitors.

Keywords: generalized linear model, moderately clipped LASSO, oracle property, variable selec-
tion

1. Introduction

Variable selection is an important issue for the high-dimensional regression model. The fundamental
goal of variable selection is to identify relevant predictive variables that can be used to explain how
the predictive variables affect the response variable. Traditional approaches such as stepwise selection
have limitations such as high computational cost and unstable sampling properties (Breiman, 1996).

As an alternative, the sparse penalized approaches have been developed as effective tools for vari-
able selection and parameter estimation in high-dimensional statistical model. Examples are the least
absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996), bridge penalty (Fu, 1998),
smoothly clipped absolute deviation (SCAD) (Fan and Peng, 2004) and minimax concave penalty
(MCP) (Zhang, 2010). Each penalty has its own desirable properties. For example, LASSO shows
high prediction accuracy, but selects more variables than the true underlying model. Theoretically, the
LASSO is not selection consistent unless the strong irrepresentable condition in Zhao and Yu (2006)
holds. In addition, the nonconvex penalties such as the SCAD and MCP satisfy selection consis-
tency, but it has been empirically shown that their prediction accuracy is not superior than the LASSO
(Huang et al., 2016; Kim et al., 2008).

There have been many penalties that combine two different penalties for preserving desirable
properties of the combined penalties. Examples include the elastic net (Zou and Hastie, 2005), sparse

1 Corresponding author: Department of Applied Statistics, Konkuk University, Korea, 120 Neungdong-ro, Gwangjin-gu,
Seoul 05029, Korea. E-mail: shkwon0522@gmail.com

Published 31 July 2020 / journal homepage: http://csam.or.kr
c⃝ 2020 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



446 Sangin Lee, Boncho Ku, Sunghoon Kown

ridge (Kwon et al., 2013) and moderately clipped LASSO (Kwon et al., 2015). The elastic net com-
bines the LASSO and ridge for variable selection that also deals with highly correlated variables,
which is the same idea for the sparse ridge that combines the MCP and ridge. The moderately clipped
LASSO (MCL) is designed to select variables as the MCP and achieve the same shrinkage effect as
the LASSO, which is suitable for a high-dimensional linear regression model (Kwon et al., 2015).

In this paper, we study the MCL for the high-dimensional generalized linear model (GLM). We
show that under some regularity conditions, the MCL is asymptotically equivalent to an oracle type
estimator which is selection consistent even when the number of variables is larger than the sample
size. We also develop an efficient algorithm for the MCL by applying the concave-convex proce-
dure (Yuille and Rangarajan, 2003) and modified local quadratic approximation algorithm (Lee et al.,
2016). We conduct some numerical studies via simulations and data analysis to show that the MCL
can perform better than other penalized estimators for the high-dimensional GLM.

The paper is organized as follows. Section 2 introduces the MCL for the high-dimensional GLM
and the computational algorithm. Section 3 proves several theoretical properties of the MCL. Section
4 presents the results of the numerical studies and Section 5 concludes the paper. All proofs and
technical details are provided in the Appendix.

2. Moderately clipped LASSO for the GLM

2.1. Definition

Let yi ∈ R and xi ∈ Rp, i ≤ n, be n random samples of response and p predictive variables from the
GLM whose conditional density is f (y|x;β) with a regression coefficient vector β = (β1, . . . , βp)T ∈
Rp. The MCL for the GLM is defined as the maximizer of the following penalized log-likelihood:

Qλ,γ(β) = L(β) −
p∑

j=1

Jλ,γ
(∣∣∣β j

∣∣∣) , (2.1)

where L(β) = (1/n)
∑n

i=1 log f (yi|xi;β) is the log-likelihood function and Jλ,γ is the MCL penalty
(Kwon et al., 2015) that satisfies

Jλ,γ(t) =


− t2

2a
+ λt, 0 ≤ t < a(λ − γ),

γt +
a
(
λ2 − γ2

)
2

, t ≥ a(λ − γ),

for λ ≥ γ ≥ 0 and a > 1. The MCL penalty is a smooth interpolation between the MCP and LASSO
penalty that becomes the MCP when γ = 0 and the LASSO penalty when γ = λ (Figure 1). The MCL
penalty has two regularization parameters λ and γ, where λ controls the sparsity of the MCL as the
MCP and γ decides the amount of shrinkage for the nonzero regression coefficients as the LASSO
(Kwon et al., 2015) penalty. Therefor, we expect that the MCL selects relevant predictive variables
as the MCP (Zhang, 2010) and produces high prediction accuracy as the LASSO (Zhang and Huang,
2008) for finite samples.

2.2. Algorithm

We introduce the CCCP-MLQA algorithm for maximizing the MCL penalized log-likelihood in (2.1)
which is not a concave optimization problem for the non-convexity of the MCL penalty. The CCCP-
MLQA algorithm consists of two main steps. The concave-convex procedure (CCCP) (Yuille and
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Figure 1: Plots of the LASSO penalty (dotted), MCP (dashed) and MCL penalty (solid) with various values of γ
and λ = 1. LASSO = least absolute shrinkage and selection operator; MCP = minimax concave penalty; MCL =

moderately clipped LASSO.

Rangarajan, 2003) converts the original problem into sequential non-quadratic concave optimization
problems, and the modified local quadratic approximation (MLQA) solves the problems from the
CCCP without losing the ascent property.

The MCL penalty is decomposed as the sum of concave and convex functions:

Jλ,γ(|t|) = Dλ,γ(t) + λ|t|,

where Dλ,γ(t) = Jλ,γ(|t|)−λ|t| is a continuously differentiable concave function. Therefor, the objective
function Qλ,γ in (2.1) can be expressed as

Qλ,γ(β) = L(β) −
p∑

j=1

Dλ,γ

(
β j

)
− λ

p∑
j=1

∣∣∣β j

∣∣∣ ,
which is a sum of convex and concave functions. The CCCP finds a local maximizer of Qλ,γ by
successively maximizing the tight lower concave function obtained from the linear approximation of
Dλ,γ. For a given current solution β̂

c
= (β̂c

1, . . . , β̂
c
p)T , the tight lower concave bound becomes

Uλ,γ

(
β|β̂c)

= L(β) −
p∑

j=1

∂Dλ,γ

(
β̂c

j

)
β j − λ

p∑
j=1

∣∣∣β j

∣∣∣ ,
where ∂Dλ,γ(β̂c

j) is a sub-gradient of Dλ,γ at β j = β̂
c
j. For maximizing Uλ,γ(β|β̂c

), we apply the MLQA
algorithm as follows. The MLQA algorithm iteratively maximizes the local quadratic approximation
of L around an initial β̃:

UQ
λ,γ

(
β|β̂c

, β̃
)
= LQ

λ,γ

(
β|β̃

)
−

p∑
j=1

∂Dλ,γ

(
β̂c

j

)
β j − λ

p∑
j=1

∣∣∣β j

∣∣∣ ,
where LQ

λ,γ(β|β̃) = L(β)+∇L(β̃)T (β− β̃)+ (β− β̃)T∇2L(β̃)(β− β̃)/2, ∇L(β) = ∂L(β)/∂β, and ∇2L(β) =

∂2L(β)/∂β2. Note that UQ
λ,γ is a simple quadratic function with the LASSO penalty. Therefor, it can
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be easily maximized with many existing LASSO algorithms such as the least angle regression (Efron
et al., 2004) and coordinate descent (Friedman et al., 2007) algorithms. Let β̃a be the maximizer of

UQ
λ,γ. When β̃a violates the ascent property then the MLQA algorithm modifies the solution β̃a by β̃ĥ

as follows.

β̃
ĥ
= ĥβ̃

a
+

(
1 − ĥ

)
β̃,

where ĥ = argmaxh>0Uλ,γ(hβ̃a
+ (1− h)β̃|β̂c

). This modification enables the MLQA algorithm to pos-
sess the ascent property (Lee et al., 2016). For the readers, we summarize the algorithm in Algorithm
1.

Algorithm 1 The CCCP-MLQA algorithm for maximizing Qλ,γ(β)

Set an initial estimator β̂
repeat (CCCP step)

Compute ∇Jλ(β) at β̂
Set an initial estimator β̃
repeat (MLQA step)

Compute ∇L(β) and ∇2L(β) at β̃
Find β̃a

= arg maxβUQ
λ,γ(β|β̂c

, β̃)
Find ĥ = arg maxh>0 Uλ(hβ̃a

+ (1 − h)β̃)
Update β̃ by βĥ = ĥβ̃

a
+ (1 − ĥ)β̃

until convergence
Update β̂ by β̃

until convergence

3. Asymptotic properties

The objective function Qλ,γ is non-concave so that there can be many local maximizers. In this
section, we first prove that there exists an oracle estimator among the local maximizers (Fan and Peng,
2004) which we call the oracle LASSO. Second, we prove that the oracle estimator is asymptotically
equivalent to the MCL (Kwon and Kim, 2012) since it is the global maximizer.

Let β∗ be the true regression coefficient vector that satisfy β∗j , 0, j ∈ A and β∗j = 0, j ∈ Ac

for some non-empty subset A ⊂ {1, . . . , p}. Consider the following penalized maximum likelihood
estimator (MLE):

β̂
oL,γ
= argmax

β j=0, j∈Ac

L(β) − γ
∑
j∈A

∣∣∣β j

∣∣∣ (3.1)

for some γ ≥ 0. We call the MLE in (3.1) the oracle LASSO since it is the LASSO obtained by
using the true predictive variables only. When γ = 0 the oracle LASSO becomes the oracle MLE that
have been used in other literatures (Fan and Li, 2001; Fan and Peng, 2004; Kwon and Kim, 2012) for
studying SCAD penalized MLE.

We need some regularity conditions from (C1) to (C6) on the true regression coefficient vector
and conditional log-likelihood which we give in the Appendix with a remark for the readability. Let
0 < 5c1 < c2 ≤ 1 and k ≥ 1 be the positive constants in (C1) and (C5).
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Theorem 1. (Local optimality) LetΩλ,γ be the set of all local maximizers of Qλ,γ. Under (C1)–(C5)
in Appendix,

P
(
β̂

oL,γ ∈ Ωλ,γ

)
→ 1,

provided that λ = o(n−(1−c2+c1)/2), γ = o(n−(1+c1)/2), and p = o(n(c2−c1)k) as n→ ∞.

Theorem 1 shows that the oracle LASSO becomes a local maximizer of Qλ,γ for the polynomial
order of p that can be larger than n for sufficiently large k. If the moment condition in (C5) holds for
any k ≥ 1 then we can extend the result of Theorem 1 to the exponential order of p. Examples are
the linear regression with sub-Gaussian error (Kim et al., 2008) and logistic regression with bounded
predictive variables (Kwon and Kim, 2012).

In practice, we cannot identify which estimator is the oracle LASSO since there can be many local
maximizers in Ωλ,γ. For the problem, we prove that the oracle LASSO is global maximizer of Qλ,γ

with probability tending to one; therefore, the oracle LASSO is asymptotically equivalent to the MCL.
It is almost impossible for the asymptotic equivalence to hold on the whole parameter space even in
the linear regression model (Zhang, 2010; Kim and Kwon, 2012) when the model is high-dimensional.
Therefor we need some restriction called the sparse Riesz condition (Zhang, 2010) stated in (C6). Let
Γr = {β :

∑p
j=1 I(β j = 0) = p − r} ⊂ Rp be a restricted parameter space whose number of nonzero

elements is at most r ≥ 1 then the asymptotic equivalence holds as follows.

Theorem 2. (Global optimality) Under (C1)–(C6) in Appendix, for any q ≤ r < n/2,

P
sup
β∈Γr

Qλ,γ(β) = Qλ,γ

(
β̂

oL,γ
)→ 1,

provided that λ = o(n−(1−c2+c1)/2), γ = o(n−(1+c1)/2), and p = o(n(c2−c1)k) as n→ ∞.

4. Numerical studies

In this section, we provide the results from numerical studies including simulations and real data
analysis. We investigate the finite sample performance of the MCL with different value of γ compared
to other competitors: LASSO, SCAD, and MCP.

4.1. Simulation studies

We consider the following three generalized linear models:

• Linear regression: y|x ∼ N(g(xTβ∗), 1) with identity link, g(xTβ) = xTβ,

• Logistic regression: y|x ∼ Bernoulli(g(xTβ∗)) with logit link, logit(g(xTβ)) = xTβ,

• Poisson regression: y|x ∼ Poisson(g(xTβ∗)) with log link, log(g(xTβ)) = xTβ,

where x = (x1, . . . , xp)T is a multivariate Gaussian random vector with mean zero and covariance
structure with Cov(xs, xt) = 0.5|s−t|, s, t ≤ p. For the true regression coefficients, we first set β̃ j =

1.2e−v( j−1)I( j ≤ q), where v satisfies β̃q = 0.6. Then we make β∗ = β̃/s with s ∈ {1, 2} for the linear
and logistic regression models, and s ∈ {2, 3} for Poisson regression model.



450 Sangin Lee, Boncho Ku, Sunghoon Kown

Table 1: Averages of the measures for the linear regression model, where the corresponding standard errors are
in parentheses

Case n Method RMSE NLV ME Correct Incorrect

s = 1

100

LASSO 1.288 (0.008) 0.834 (0.011) 0.664 (0.022) 10.00 (0.000) 27.72 (1.028)
SCAD 1.392 (0.023) 0.995 (0.034) 0.987 (0.068) 8.99 (0.098) 26.06 (1.050)
MCP 1.409 (0.025) 1.025 (0.038) 1.048 (0.076) 8.00 (0.136) 3.20 (0.251)
MCL(γ = 2γ̂L) 1.415 (0.014) 1.011 (0.021) 1.019 (0.042) 9.95 (0.021) 0.32 (0.073)
MCL(γ = γ̂L) 1.182 (0.007) 0.702 (0.008) 0.401 (0.017) 9.94 (0.023) 1.64 (0.220)
MCL(γ = γ̂L/2) 1.132 (0.007) 0.643 (0.008) 0.283 (0.016) 9.86 (0.034) 2.95 (0.347)
MCL(γ = γ̂L/4) 1.199 (0.013) 0.727 (0.016) 0.450 (0.032) 9.48 (0.074) 7.79 (1.225)
MCL(γ = γ∗) 1.125 (0.006) 0.635 (0.007) 0.268 (0.015) 9.87 (0.033) 3.06 (0.216)

300

LASSO 1.074 (0.002) 0.577 (0.002) 0.153 (0.004) 10.00 (0.000) 28.71 (1.064)
SCAD 1.027 (0.001) 0.528 (0.001) 0.054 (0.002) 10.00 (0.000) 12.84 (0.936)
MCP 1.023 (0.001) 0.523 (0.001) 0.044 (0.002) 10.00 (0.000) 2.03 (0.341)
MCL(γ = 2γ̂L) 1.157 (0.003) 0.670 (0.004) 0.337 (0.008) 10.00 (0.000) 0.03 (0.017)
MCL(γ = γ̂L) 1.057 (0.002) 0.559 (0.002) 0.115 (0.003) 10.00 (0.000) 1.42 (0.306)
MCL(γ = γ̂L/2) 1.031 (0.001) 0.531 (0.001) 0.060 (0.002) 10.00 (0.000) 1.63 (0.307)
MCL(γ = γ̂L/4) 1.025 (0.001) 0.525 (0.001) 0.047 (0.002) 10.00 (0.000) 1.84 (0.344)
MCL(γ = γ∗) 1.022 (0.001) 0.523 (0.001) 0.043 (0.002) 10.00 (0.000) 1.96 (0.344)

s = 2

100

LASSO 1.276 (0.008) 0.818 (0.010) 0.632 (0.021) 9.43 (0.071) 26.32 (1.067)
SCAD 1.396 (0.009) 0.979 (0.014) 0.952 (0.027) 7.04 (0.135) 19.95 (1.537)
MCP 1.398 (0.011) 0.983 (0.016) 0.960 (0.032) 4.93 (0.100) 4.21 (0.237)
MCL(γ = 2γ̂L) 1.407 (0.012) 0.998 (0.018) 0.993 (0.036) 8.42 (0.110) 0.85 (0.151)
MCL(γ = γ̂L) 1.239 (0.008) 0.771 (0.010) 0.538 (0.021) 8.44 (0.108) 6.52 (0.808)
MCL(γ = γ̂L/2) 1.263 (0.009) 0.802 (0.011) 0.601 (0.022) 7.56 (0.149) 12.31 (1.349)
MCL(γ = γ̂L/4) 1.325 (0.009) 0.883 (0.012) 0.760 (0.024) 6.92 (0.180) 15.77 (1.674)
MCL(γ = γ∗) 1.235 (0.008) 0.766 (0.010) 0.529 (0.020) 8.09 (0.143) 7.52 (0.861)

300

LASSO 1.074 (0.002) 0.577 (0.002) 0.153 (0.004) 10.00 (0.000) 28.67 (1.066)
SCAD 1.104 (0.003) 0.610 (0.003) 0.219 (0.007) 9.62 (0.050) 36.29 (1.094)
MCP 1.068 (0.003) 0.571 (0.003) 0.139 (0.006) 9.09 (0.075) 8.01 (0.549)
MCL(γ = 2γ̂L) 1.156 (0.003) 0.669 (0.004) 0.336 (0.008) 9.95 (0.021) 0.04 (0.019)
MCL(γ = γ̂L) 1.059 (0.002) 0.561 (0.002) 0.120 (0.004) 9.97 (0.017) 2.79 (0.540)
MCL(γ = γ̂L/2) 1.042 (0.002) 0.543 (0.002) 0.084 (0.004) 9.82 (0.038) 5.05 (0.432)
MCL(γ = γ̂L/4) 1.048 (0.002) 0.549 (0.002) 0.096 (0.004) 9.61 (0.056) 7.60 (0.531)
MCL(γ = γ∗) 1.041 (0.002) 0.542 (0.002) 0.082 (0.004) 9.79 (0.040) 6.10 (0.588)

RMSE = root mean square error; NLV = negative log-likelihood value; ME = model error; LASSO = least absolute
shrinkage and selection operator; SCAD = smoothly clipped absolute deviation; MCP = minimax concave penalty; MCL
= moderately clipped LASSO.

For comparison, we consider the LASSO, SCAD, MCP, and MCL where the concavity parameter
values for the SCAD, MCP, and MCL are fixed with a = 3.7, 2.1, and 1.1, respectively, as recom-
mended in the original literature. For the second tuning parameter γ of the MCL, we consider five
cases: four MCLs with fixed γ = γ̂L/2k, k ∈ {−1, 0, 1, 2}, where γ̂L is the optimally selected λ value
of the LASSO and one MCL with γ∗ where γ∗ is the best one among the γ values of the four MCLs.
For each method, the main tuning parameter λ is selected by minimizing the negative log-likelihood
values obtained from n independent validation samples.

We compute the root mean square error (RMSE), negative log-likelihood value (NLV), and model
error (ME) based on independent test samples of size N = 5,000 defined as

√√√
1
N

N∑
i=1

(yi − µ̂i)2, − 1
N

N∑
i=1

log f
(
yi|xi; β̂

)
, and

1
N

N∑
i=1

(
xT

i β̂ − xT
i β
∗
)2
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Table 2: Averages of the measures for the logistic regression models, where the corresponding standard errors
are in parentheses

Case n Method RMSE NLV ME Correct Incorrect

s = 1

100

LASSO 0.390 (0.001) 0.467 (0.003) 11.637 (0.191) 7.08 (0.124) 28.57 (0.914)
SCAD 0.416 (0.002) 0.534 (0.006) 10.651 (0.380) 2.79 (0.074) 1.38 (0.160)
MCP 0.419 (0.003) 0.542 (0.007) 10.548 (0.404) 2.25 (0.095) 0.10 (0.033)
MCL(γ = 2γ̂L) 0.406 (0.002) 0.505 (0.005) 14.429 (0.263) 5.37 (0.158) 4.09 (0.587)
MCL(γ = γ̂L) 0.388 (0.001) 0.462 (0.003) 11.126 (0.209) 5.28 (0.186) 10.06 (1.267)
MCL(γ = γ̂L/2) 0.394 (0.002) 0.475 (0.004) 9.430 (0.201) 5.02 (0.190) 15.04 (1.582)
MCL(γ = γ̂L/4) 0.404 (0.002) 0.505 (0.005) 8.981 (0.245) 4.55 (0.205) 15.91 (1.872)
MCL(γ = γ∗) 0.389 (0.001) 0.464 (0.003) 9.926 (0.233) 4.89 (0.185) 9.55 (1.285)

300

LASSO 0.328 (0.000) 0.348 (0.001) 6.974 (0.096) 9.65 (0.059) 41.17 (0.454)
SCAD 0.345 (0.001) 0.376 (0.003) 3.861 (0.135) 5.27 (0.083) 1.75 (0.206)
MCP 0.346 (0.001) 0.377 (0.003) 3.927 (0.137) 4.96 (0.090) 0.26 (0.061)
MCL(γ = 2γ̂L) 0.349 (0.001) 0.399 (0.002) 10.790 (0.104) 8.90 (0.082) 0.59 (0.090)
MCL(γ = γ̂L) 0.325 (0.000) 0.343 (0.001) 6.642 (0.099) 8.61 (0.110) 8.38 (1.057)
MCL(γ = γ̂L/2) 0.330 (0.001) 0.342 (0.002) 4.381 (0.110) 7.35 (0.155) 11.70 (1.738)
MCL(γ = γ̂L/4) 0.338 (0.001) 0.358 (0.003) 3.880 (0.137) 6.01 (0.143) 4.40 (1.141)
MCL(γ = γ∗) 0.326 (0.001) 0.339 (0.001) 4.712 (0.166) 7.62 (0.151) 5.99 (1.046)

s = 2

100

LASSO 0.450 (0.001) 0.591 (0.003) 3.210 (0.064) 5.33 (0.145) 21.69 (1.186)
SCAD 0.462 (0.001) 0.624 (0.003) 3.353 (0.089) 2.41 (0.098) 2.38 (0.237)
MCP 0.462 (0.001) 0.627 (0.004) 3.290 (0.089) 1.49 (0.075) 0.07 (0.025)
MCL(γ = 2γ̂L) 0.471 (0.002) 0.635 (0.004) 4.239 (0.083) 2.85 (0.167) 1.73 (0.339)
MCL(γ = γ̂L) 0.449 (0.001) 0.589 (0.003) 3.155 (0.065) 3.75 (0.164) 8.54 (1.279)
MCL(γ = γ̂L/2) 0.453 (0.002) 0.602 (0.004) 2.994 (0.074) 2.87 (0.163) 7.88 (1.443)
MCL(γ = γ̂L/4) 0.458 (0.002) 0.618 (0.005) 3.206 (0.091) 2.03 (0.135) 3.96 (1.232)
MCL(γ = γ∗) 0.447 (0.001) 0.587 (0.004) 2.888 (0.073) 3.52 (0.163) 7.52 (1.233)

300

LASSO 0.405 (0.000) 0.499 (0.001) 1.624 (0.033) 8.56 (0.089) 33.67 (1.062)
SCAD 0.416 (0.001) 0.520 (0.002) 1.480 (0.044) 3.97 (0.078) 2.52 (0.229)
MCP 0.417 (0.001) 0.523 (0.002) 1.510 (0.038) 3.51 (0.077) 0.18 (0.043)
MCL(γ = 2γ̂L) 0.428 (0.001) 0.551 (0.002) 2.885 (0.044) 6.78 (0.129) 0.23 (0.058)
MCL(γ = γ̂L) 0.404 (0.000) 0.497 (0.001) 1.587 (0.034) 7.16 (0.139) 8.55 (1.073)
MCL(γ = γ̂L/2) 0.408 (0.001) 0.501 (0.002) 1.370 (0.038) 4.58 (0.091) 1.50 (0.515)
MCL(γ = γ̂L/4) 0.411 (0.001) 0.509 (0.002) 1.372 (0.038) 4.04 (0.082) 0.53 (0.115)
MCL(γ = γ∗) 0.404 (0.000) 0.496 (0.001) 1.360 (0.037) 5.87 (0.179) 4.99 (0.916)

RMSE = root mean square error; NLV = negative log-likelihood value; ME = model error; LASSO = least absolute
shrinkage and selection operator; SCAD = smoothly clipped absolute deviation; MCP = minimax concave penalty; MCL
= moderately clipped LASSO.

respectively, where µ̂i = g−1(xT
i β̂) is the estimated conditional mean of yi. We also count the number

of nonzero regression coefficients selected correctly (Correct) and incorrectly (Incorrect). We repeat
the simulation 100 times for n = {100, 300}, p = 2000, and q = 10 and summarize the averages of the
measures in Tables 1–3.

Table 1 presents the simulation results in the linear regression model. When the sample size is
small, the LASSO selects correct predictive variables better than the others keeping higher prediction
accuracy but selects too many incorrect variables simultaneously, which confirms that the LASSO
overfits the model (Zhang and Huang, 2008). While the sample size is large, the MCP and SCAD
are better than the LASSO for both prediction and selectivity measures. The MCL with γ∗ shows the
best performance regardless of the cases which may be because it has one more tuning parameter γ.
We recommend to use the MCLs with γ ≤ γ̂L that perform better than the others also if reducing the
computational cost is important. Table 2 and 3 shows the results in the logistic and Poisson regression
models where the results are similar to the linear regression model.
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Table 3: Averages of the measures for the Poisson regression models, where the corresponding standard errors
are in parentheses

Case n Method RMSE NLV ME Correct Incorrect

s = 2

100

LASSO 115.160 (13.666) 10.647 (0.704) 1.094 (0.056) 9.52 (0.074) 29.28 (0.789)
SCAD 109.725 (13.580) 9.561 (0.684) 1.123 (0.059) 8.46 (0.153) 26.26 (0.763)
MCP 105.051 (12.769) 8.635 (0.569) 1.116 (0.067) 7.20 (0.158) 13.13 (0.396)
MCL(γ = 2γ̂L) 115.303 (13.858) 11.094 (0.850) 1.584 (0.086) 8.42 (0.129) 12.77 (0.343)
MCL(γ = γ̂L) 102.650 (13.267) 7.635 (0.589) 0.863 (0.060) 8.95 (0.111) 13.49 (0.353)
MCL(γ = γ̂L/2) 90.915 (12.667) 6.560 (0.514) 0.675 (0.059) 8.47 (0.131) 13.47 (0.346)
MCL(γ = γ̂L/4) 92.097 (12.401) 7.267 (0.481) 0.870 (0.063) 7.65 (0.141) 13.63 (0.411)
MCL(γ = γ∗) 89.929 (12.486) 6.091 (0.468) 0.641 (0.057) 8.61 (0.138) 13.98 (0.351)

300

LASSO 66.511 (6.925) 2.764 (0.101) 0.253 (0.016) 10.00 (0.000) 32.75 (0.863)
SCAD 45.700 (4.282) 2.156 (0.065) 0.145 (0.018) 10.00 (0.000) 32.93 (0.875)
MCP 22.972 (2.610) 1.689 (0.053) 0.053 (0.015) 10.00 (0.000) 19.66 (1.008)
MCL(γ = 2γ̂L) 71.708 (7.751) 3.105 (0.149) 0.445 (0.033) 9.96 (0.031) 9.27 (0.327)
MCL(γ = γ̂L) 49.321 (5.509) 2.106 (0.069) 0.162 (0.016) 10.00 (0.000) 10.94 (0.355)
MCL(γ = γ̂L/2) 34.005 (3.663) 1.798 (0.055) 0.079 (0.015) 10.00 (0.000) 14.87 (0.556)
MCL(γ = γ̂L/4) 27.651 (2.967) 1.718 (0.053) 0.060 (0.015) 10.00 (0.000) 17.42 (0.774)
MCL(γ = γ∗) 23.145 (2.629) 1.680 (0.052) 0.052 (0.015) 10.00 (0.000) 20.71 (0.977)

s = 3

100

LASSO 7.721 (0.277) 2.382 (0.038) 0.643 (0.022) 8.49 (0.113) 26.79 (0.859)
SCAD 7.596 (0.306) 2.368 (0.035) 0.648 (0.021) 7.36 (0.169) 25.30 (0.918)
MCP 7.844 (0.416) 2.409 (0.041) 0.699 (0.025) 5.36 (0.102) 9.41 (0.387)
MCL(γ = 2γ̂L) 8.014 (0.309) 2.513 (0.046) 0.938 (0.032) 6.97 (0.146) 7.75 (0.401)
MCL(γ = γ̂L) 7.202 (0.238) 2.229 (0.035) 0.595 (0.022) 7.24 (0.138) 11.70 (0.567)
MCL(γ = γ̂L/2) 7.319 (0.610) 2.204 (0.036) 0.513 (0.022) 6.63 (0.130) 13.47 (0.751)
MCL(γ = γ̂L/4) 7.342 (0.335) 2.336 (0.040) 0.604 (0.023) 5.86 (0.120) 12.73 (0.838)
MCL(γ = γ∗) 6.939 (0.224) 2.222 (0.037) 0.548 (0.022) 6.82 (0.160) 13.69 (0.629)

300

LASSO 4.354 (0.138) 1.547 (0.007) 0.164 (0.005) 9.98 (0.014) 30.45 (0.919)
SCAD 3.935 (0.119) 1.530 (0.007) 0.135 (0.005) 9.96 (0.019) 29.01 (0.954)
MCP 3.361 (0.127) 1.500 (0.007) 0.098 (0.004) 9.56 (0.062) 15.63 (1.064)
MCL(γ = 2γ̂L) 4.911 (0.167) 1.635 (0.010) 0.321 (0.010) 9.73 (0.046) 3.25 (0.228)
MCL(γ = γ̂L) 3.670 (0.110) 1.487 (0.005) 0.124 (0.004) 9.89 (0.031) 8.30 (0.379)
MCL(γ = γ̂L/2) 3.092 (0.080) 1.456 (0.004) 0.072 (0.003) 9.83 (0.042) 16.84 (0.760)
MCL(γ = γ̂L/4) 3.029 (0.077) 1.464 (0.005) 0.070 (0.003) 9.76 (0.047) 20.56 (0.949)
MCL(γ = γ∗) 3.017 (0.078) 1.457 (0.005) 0.069 (0.003) 9.79 (0.045) 19.28 (0.869)

RMSE = root mean square error; NLV = negative log-likelihood value; ME = model error; LASSO = least absolute
shrinkage and selection operator; SCAD = smoothly clipped absolute deviation; MCP = minimax concave penalty; MCL
= moderately clipped LASSO.

4.2. Real data analysis

We analyze colon cancer data from a gene expression study of 22 normal and 40 tumor colon tissue
samples analyzed with more than 6,500 human genes. We consider 2,000 genes selected with the
highest minimal intensity across the samples (Alon, 1999). This data set is available from the R
package sdwd. We apply penalized logistic regression model for the samples. For comparison, we
divide the samples into two parts by randomly selecting 50 samples for training and 12 samples
for test. Optimal values of regularization parameters are selected by 10-fold cross-validation on the
training samples. We then evaluate the RMSE, NLV and mis-classification errors (MIS) based on test
samples, and we also compute the model size (MS) as the number of estimated nonzero coefficients.

We repeat this whole procedure 100 times, and summarize the results in Table 4. As expected,
the LASSO performs better than MCP and SCAD in terms of prediction accuracy, but it produces
the largest model. The MCL with γ∗ or γ̂L/2 perform the best in prediction while selecting smaller
number of variables than the LASSO, which confirm the results in the simulations.
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Table 4: Averages of the measures for Colon data analysis, where the numbers in parentheses are the
corresponding standard errors

Method RMSE Likelihood MIS MS
LASSO 0.3692 (0.0054) 0.4594 (0.0125) 0.1667 0.0085) 8.09 (0.4983)
SCAD 0.4013 (0.0080) 0.5201 (0.0186) 0.2550 0.0100) 1.60 (0.0853)
MCP 0.4049 (0.0088) 0.5330 (0.0208) 0.2417 0.0111) 0.68 (0.0510)
MCL(γ = 2γ̂L) 0.4011 (0.0040) 0.5041 (0.0072) 0.2100 0.0102) 3.46 (0.1920)
MCL(γ = γ̂L) 0.4395 (0.0037) 0.5750 (0.0068) 0.3008 0.0076) 2.45 (0.2657)
MCL(γ = γ̂L/2) 0.3690 (0.0042) 0.4463 (0.0075) 0.1475 0.0087) 5.80 (0.3651)
MCL(γ = γ̂L/4) 0.3624 (0.0058) 0.4410 (0.0124) 0.1692 0.0094) 5.08 (0.5477)
MCL(γ = γ∗) 0.3658 (0.0060) 0.4538 (0.0148) 0.1642 0.0094) 4.58 (0.4425)

RMSE = root mean square error; MIS =mis-classification errors; MS =model size; LASSO = least absolute shrinkage and
selection operator; SCAD = smoothly clipped absolute deviation; MCP = minimax concave penalty; MCL = moderately
clipped LASSO.

5. Concluding remarks

In this paper, we study the MCL for the high-dimensional GLM in two aspects: theories and numerical
analysis. We prove that the MCL is asymptotically equivalent the oracle LASSO under some regular-
ity conditions, which can be theoretical supports for nice finite sample performance of the MCL. As a
promising alternative to current existing penalized estimators, the MCL can be further applied to other
statistical models such as Cox’s regression and Gaussian graphical models. This paper represents a
fundamental basis for future works.
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Appendix A: Regularity conditions

Let ℓi(β) = log f (yi|xi;β), i ≤ n. For any vector a and subset S ⊂ {1, . . . , p}, let aS be the sub-vector
whose element indices are in S. Similarly, let AS be the sub-matrix whose column and row indices
are in S for any matrix A.

(C1) There exist positive constants c1, c2, and M1 such that 5c1 < c2 ≤ 1,

q = O (nc1 ) and m∗ ≥ M1n−
1−c2

2 ,

where m∗ = min j∈A |β∗j | is the minimum of the signal size.

(C2) The first and second derivatives of the log-likelihood satisfy

Eβ∗
{
∂ℓ1(β∗)
∂β

}
= 0p and Eβ∗

{
∂2ℓ1(β∗)
∂β2

}
= −I(β∗),

where I(β∗) = Eβ∗ {(∂ℓ1(β∗)/∂β)(∂ℓ1(β∗)/∂β)T } is the Fisher information matrix.

(C3) There exist positive constants M2 and M3 such that

0 < M2 ≤ τmin
(
IA(β∗)

) ≤ τmax
(
IA(β∗)

) ≤ M3 < ∞,
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where τmin and τmax denote the minimum and maximum eigenvalues, respectively.

(C4) There exists an open subset Γ ∈ Rp that contains the true coefficients vector β∗ such that the
density admits all third derivatives for almost all zi = (yi, xT

i )T , i ≤ n. Furthermore, there exists
a function U such that

sup
1≤k,l,m≤p

∣∣∣∣∣∣ ∂3ℓ1(β)
∂βk∂βl∂βm

∣∣∣∣∣∣ < U(z1),

for all β ∈ Γ.

(C5) There exists an integer k ≥ 1 and positive constants M4, M5, and M6 such that

sup
1≤k≤p

Eβ∗
{
∂ℓ1(β∗)
∂βk

}2k

< M4, sup
1≤k,l≤p

Eβ∗
{
∂2ℓ1(β∗)
∂βk∂βl

}2k

< M5, and Eβ∗ {U(z1)}2k < M6.

(C6) There exists a positive constant M7 such that

inf
q≤r< n

2

min
|S|≤r

inf
β∈ΓS

τmin (HS(β)) > M7,

for all sufficiently large n, where ΓS = {β : β j = 0, j ∈ Sc} is the restricted parameter space with
respect to a subset S and H(β) = −∇2L(β) is the negative Hessian matrix.

Remark 1. Condition (C1) allows the number of true non-zero regression coefficients to diverge
to infinity and their values to decrease toward zero (Kwon and Kim, 2012). Conditions (C2)–(C4)
are standard for the asymptotic theories in the maximum likelihood estimation (Fan and Peng, 2004;
Kwon and Kim, 2012). Condition (C5) represents the tail behavior of the conditional density, which
determines the order of p with respect to some positive integer k. The linear regression with sub-
Gaussian tail errors and logistic regression with bounded predictive variables satisfy condition (C5)
(Kim et al., 2008; Kwon and Kim, 2012). Condition (C6) corresponds to the sparse Riesz condition
(Zhang and Zhang, 2012; Kim and Kwon, 2012) studied in the linear regression, which guarantees
the strict concavity of the log-likelihood function on the restricted parameter spaces. In the linear
regression, condition (C6) implies that all of sub-design matrices whose number of columns are less
than the sample size are non-singular.

Appendix B: Proofs

Let ∇AS j(β) = ∂S j(β)/∂βA and ∇2
AS j(β) = ∂2S j(β)/∂β2

A, where S j(β), j ≤ p is the jth element of
∇L(β). We need some lemmas below whose proofs are omitted.

Lemma 1. (Kwon et al., 2015) If β̂ satisfies

min
j∈S

∣∣∣β̂ j

∣∣∣ > a(λ − γ), max
j∈Sc

∣∣∣∣S j

(
β̂
)∣∣∣∣ ≤ λ, and S j

(
β̂
)
= γsign

(
β̂ j

)
, j ∈ S

then β̂ ∈ Ωλ,γ, where S = { j : β̂ j , 0}.

Lemma 2. (Fan and Peng, 2004) Under (C2)–(C5),∣∣∣∣∣∣∣∣β̂oL,γ − β∗
∣∣∣∣∣∣∣∣ = Op

(√
q
n

)
as n→ ∞.
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Lemma 3. (Kwon and Kim, 2012) Under (C2)–(C5),

P
(∣∣∣S j(β∗)

∣∣∣ > α
√

n

)
= O

(
α−2k

)
, P

(∣∣∣∣∣∣∇2
AS j(β)

∣∣∣∣∣∣ > qα
)
= O

(
α−2k

)
, and

P
(∣∣∣∣∣∣∇AS j(β∗) − E∇AS j(β∗)

∣∣∣∣∣∣ > α
√

q
n

)
= O

(
α−2k

)
as n→ ∞ for any α > 0, j ≤ p, and β ∈ Γ.

Proof of Theorem 1: The first order Karush-Kuhn-Tucker necessary conditions imply that
S j

(
β̂

oL,γ
)
= γsign

(
β̂

oL,γ
j

)
, β̂

oL,γ
j , 0,∣∣∣∣∣S j

(
β̂

oL,γ
)∣∣∣∣∣ ≤ γ, β̂

oL,γ
j = 0,

(B.1)

for all j ∈ A. Therefore, it suffices to show that

P
(
min
j∈A

∣∣∣∣β̂oL,γ
j

∣∣∣∣ > a(λ − γ)
)
→ 1 and P

(
max
j∈Ac

∣∣∣∣∣S j

(
β̂

oL,γ
)∣∣∣∣∣ < λ)→ 1 (B.2)

as n→ ∞. From (C1) and Lemma 2,

min
j∈A

∣∣∣∣β̂oL,γ
j

∣∣∣∣ ≥ min
j∈A

∣∣∣β∗j ∣∣∣ −max
j∈A

∣∣∣∣β̂oL,γ
j − β∗j

∣∣∣∣ = Op

(
n−

1−c2
2

)
,

as n → ∞, which implies the first part in (B.2). From Taylor’s expansion, there exists β∗∗ that lies
between β̂

oL,γ
and β∗ such that

S j

(
β̂

oL,γ
)
= S j(β∗) + ∇AS j(β∗)T

(
β̂

oL,γ
A − β∗A

)
+

(
β̂

oL,γ
A − β∗A

)T
∇2
AS j(β∗∗)

(
β̂

oL,γ
A − β∗A

)
2

for all j ∈ Ac. From Cauchy-Schwarz inequality,

P
(
max
j∈Ac

∣∣∣∣∣S j

(
β̂

oL,γ
)∣∣∣∣∣ > λ) ≤ P

(
max
j∈Ac

∣∣∣S j
(
β∗

)∣∣∣ > λ

4

)
+ P

(
max
j∈Ac

∣∣∣∣∣∣∇AS j(β∗) − E∇AS j(β∗)
∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣β̂oL,γ

A − β∗A
∣∣∣∣∣∣∣∣ > λ

4

)
+ P

(
max
j∈Ac

∣∣∣∣∣∣E∇AS j(β∗)
∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣β̂oL,γ

A − β∗A
∣∣∣∣∣∣∣∣ > λ

4

)
+ P

(
max
j∈Ac

∣∣∣∣∣∣∇2
AS j(β∗∗)

∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣β̂oL,γ
A − β∗A

∣∣∣∣∣∣∣∣2 > λ

2

)
let
= P1 + P2 + P3 + P4,

where || · ||F is Frobenius norm. From Lemma 3,

P1 ≤
∑
j∈Ac

P
(∣∣∣S j(β∗)

∣∣∣ > λ

4

)
= O

 p(√
nλ

)2k

→ 0
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as n→ ∞. Similarly,

P2 ≤ P
(∣∣∣∣∣∣∣∣∣∣(β̂oL,γ

A − β∗A
)∣∣∣∣∣∣∣∣∣∣ > q

√
n

)
+ P

(
max
j∈Ac

∣∣∣∣∣∣∇AS j(β∗) − E∇AS j(β∗)
∣∣∣∣∣∣ > √nλ

4q

)
= o(1) + O

p
/ (n
√

nλ
q
√

q

)2k→ 0

as n→ ∞. From (C5),

P3 = P
(
max
j∈Ac

∣∣∣∣∣∣E∇AS j(β∗)
∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣(β̂oL,γ

A − β∗A
)∣∣∣∣∣∣∣∣∣∣ > λ

4

)
≤ P

(∣∣∣∣∣∣∣∣∣∣(β̂oL,γ
A − β∗A

)∣∣∣∣∣∣∣∣∣∣ > λ

4M5
√

q

)
→ 0

as n→ ∞. Lemma 3 implies that

P4 ≤ P
(∣∣∣∣∣∣∣∣∣∣(β̂oL,γ

A − β∗A
)∣∣∣∣∣∣∣∣∣∣2 > q

√
q

n

)
+ P

(
max
j∈Ac

∣∣∣∣∣∣E∇2
AS j(β∗∗)

∣∣∣∣∣∣
F >

nλ
2q
√

q

)
= o(1) + O

p
/ ( nλ

q2 √q

)2k→ 0

as n→ ∞. This completes the proof. �

Lemma 4. (Low dimensional global optimality) Assume that p < n. Under (C1)–(C6),

P
sup
β∈Rp

Qλ,γ(β) ≤ Qλ,γ

(
β̂

oL,γ
)→ 1,

provided λ = o(n−(1−c2+c1)/2), γ = o(n−(1+c1)/2), and p/(
√

nλ)2k → 0 as n→ ∞.

Proof of Lemma 4: From Taylor’s expansion,

L(β) − L
(
β̂

oL,γ
)
= S

(
β̂

oL,γ
)T (
β − β̂oL,γ

)
+

(
β − β̂oL,γ

)T
∇S (β∗∗)

(
β − β̂oL,γ

)
2

for some β∗∗ lies between β and β̂
oL,γ

. From (B.1) and (B.2),

S
(
β̂

oL,γ
)T (
β − β̂oL,γ

)
=

p∑
j=1

S j

(
β̂

oL,γ
) (
β j − β̂oL,γ

j

)
≤

∑
j∈Ac

op(λ)|β j|.

(C6) and Cauchy-Schwarz inequality imply that(
β − β̂oL,γ

)T
∇S (β∗∗)

(
β − β̂oL,γ

)
2

≤ −M7

∣∣∣∣∣∣∣∣β − β̂oL,γ
∣∣∣∣∣∣∣∣2 .
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Therefore, it follows that

Qλ,γ(β) − Qλ,γ

(
β̂

oL,γ
)
≤

p∑
j=1

w j

(
β j

)
,

where

w j(β j) = op(λ)
∣∣∣β j

∣∣∣ I ( j ∈ Ac) − M7

(
β j − β̂oL,γ

j

)2
+

{
Jλ,γ

(
β̂

oL,γ
j

)
− Jλ,γ

(
β j

)}
.

First, consider the case j ∈ A, where S j(β̂
oL,γ

) = γsign(β̂oL,γ
j ). If |β j| ≥ a(λ − γ), then

w j(β j) ≤ −M7

(
β j − β̂oL,γ

j

)2
< 0.

If |β j| < a(λ − γ), then∣∣∣∣β j − β̂oL,γ
j

∣∣∣∣ ≥ min
j∈A

∣∣∣β∗j ∣∣∣ −max
j∈A

∣∣∣∣β̂oL,γ
j − β∗j

∣∣∣∣ − a(λ − γ) = Op

(
n−

1−c2
2

)
and

Jλ,γ
(
β̂

oL,γ
j

)
− Jλ,γ

(
β j

)
≤ ∇Jλ,γ

(∣∣∣β j

∣∣∣) (∣∣∣∣β̂oL,γ
j

∣∣∣∣ − ∣∣∣β j

∣∣∣) . (B.3)

Therefore, we have

w j

(
β j

)
≤ −M7

(
β j − β̂oL,γ

j

)2
+ λ

∣∣∣∣β̂oL,γ
j

∣∣∣∣ ≤ −Op

(
n−(1−c2)

)
+ op

(
n−(1−c2+

c1
2 )) ≤ 0

for sufficiently large n. Second, consider the case j ∈ Ac, where β̂oL,γ
j = 0. If |β j| ≥ a(λ − γ) then

w j(β j) ≤
∣∣∣β j

∣∣∣ (op(λ) − M7
∣∣∣β j

∣∣∣) ≤ 0.

If |β j| < a(λ − γ), then from (B.2) and (B.3)

w j

(
β j

)
≤

∣∣∣β j

∣∣∣ (op(λ) − ∇Jλ,γ
(∣∣∣β j

∣∣∣)) = ∣∣∣β j

∣∣∣ (op(λ) − λ
)
≤ 0.

Therefore, Qλ,γ(β) − Qλ,γ(β̂
oL,γ

) ≤ 0 for sufficiently large n. This completes the proof. �

Proof of Theorem 2: Suppose that there is another global maximizer β̂ ∈ Γr such that Qλ,γ(β̂) >
Qλ,γ(β̂

oL,γ
). Let S = { j : β̂ j , 0} ∪ { j : β̂oL,γ

j , 0}. By Lemma 4 and (C6), it is easy to see that

supβS∈ΓS Qλ,γ(βS) ≤ Qλ,γ(β̂
oL,γ
S ) since |S| ≤ 2r ≤ n. Therefore, it follows that

Qλ,γ

(
β̂
)
= Qλ,γ

(
β̂S

)
≤ sup
βS∈ΓS

Qλ,γ(βS) ≤ Qλ,γ

(
β̂

oL,γ
S

)
= Qλ,γ

(
β̂

oL,γ
)
,

which is a contradiction. �
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