• Title/Summary/Keyword: minimax algorithm

Search Result 32, Processing Time 0.024 seconds

A DUAL ALGORITHM FOR MINIMAX PROBLEMS

  • HE SUXIANG
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.401-418
    • /
    • 2005
  • In this paper, a dual algorithm, based on a smoothing function of Bertsekas (1982), is established for solving unconstrained minimax problems. It is proven that a sequence of points, generated by solving a sequence of unconstrained minimizers of the smoothing function with changing parameter t, converges with Q-superlinear rate to a Kuhn-Thcker point locally under some mild conditions. The relationship between the condition number of the Hessian matrix of the smoothing function and the parameter is studied, which also validates the convergence theory. Finally the numerical results are reported to show the effectiveness of this algorithm.

A GA based on-line tuning of robust minimax I-PD controller with penalty on manipulated variable

  • Kawabe, Tohru;Tagami, Takanori;Katayama, Tohru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.428-431
    • /
    • 1995
  • In this paper we propose an on-line tuning method by using genetic algorithm for robust minimax I-PD controller based on new criterion. The new criterion is the Integral of Squared Error (ISE) with a penalty of the derivative of manipulated variable. The work focuses on robust tuning of I-PD controller's parameters in the presence of plant parameter uncertainty. The result of several simulation studies are provided to illustrate the performance of this robust tunig method.

  • PDF

Evaluation of weights to get the best move in the Gonu game (고누게임에서 최선의 수를 구하기 위한 가중치의 평가)

  • Shin, Yong-Woo
    • Journal of Korea Game Society
    • /
    • v.18 no.5
    • /
    • pp.59-66
    • /
    • 2018
  • In this paper, one of the traditional game, Gonu game, is implemented and experimented. The Minimax algorithm was applied as a technique to implement the Gonu game. We proposed an evaluation function to implement game in Minimax algorithm. We analyze the efficiency of algorithm for alpha beta pruning to improve the performance after implementation of Gonu game. Weights were analyzed for optimal analysis that affected the win or loss of the game. For the weighting analysis, a competition of human and computer was performed. We also experimented with computer and computer. As a result, we proposed a weighting value for optimal attack and defense.

An Implementation of Othello Game Player Using ANN based Records Learning and Minimax Search Algorithm (ANN 기반 기보학습 및 Minimax 탐색 알고리즘을 이용한 오델로 게임 플레이어의 구현)

  • Jeon, Youngjin;Cho, Youngwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1657-1664
    • /
    • 2018
  • This paper proposes a decision making scheme for choosing the best move at each state of game in order to implement an artificial intelligence othello game player. The proposed decision making scheme predicts the various possible states of the game when the game has progressed from the current state, evaluates the degree of possibility of winning or losing the game at the states, and searches the best move based on the evaluation. In this paper, we generate learning data by decomposing the records of professional players' real game into states, matching and accumulating winning points to the states, and using the Artificial Neural Network that learned them, we evaluated the value of each predicted state and applied the Minimax search to determine the best move. We implemented an artificial intelligence player of the Othello game by applying the proposed scheme and evaluated the performance of the game player through games with three different artificial intelligence players.

An Additive Sparse Penalty for Variable Selection in High-Dimensional Linear Regression Model

  • Lee, Sangin
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.147-157
    • /
    • 2015
  • We consider a sparse high-dimensional linear regression model. Penalized methods using LASSO or non-convex penalties have been widely used for variable selection and estimation in high-dimensional regression models. In penalized regression, the selection and prediction performances depend on which penalty function is used. For example, it is known that LASSO has a good prediction performance but tends to select more variables than necessary. In this paper, we propose an additive sparse penalty for variable selection using a combination of LASSO and minimax concave penalties (MCP). The proposed penalty is designed for good properties of both LASSO and MCP.We develop an efficient algorithm to compute the proposed estimator by combining a concave convex procedure and coordinate descent algorithm. Numerical studies show that the proposed method has better selection and prediction performances compared to other penalized methods.

Composite Design Criteria : Model and Variance (복합실험기준의 설정: 모형과 분산구조)

  • 김영일
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.393-405
    • /
    • 2000
  • Box and Draper( 19(5) listed some properties of a design that should be considered in design selection. But it is impossible that one design criterion from optimal experimental design theory reflects many potential objectives of an experiment, because the theory was originally based on the underlying model and its strict assumption about the error structure. Therefore, when it is neces::;ary to implement multi-objective experimental design. it is common practice to balance out the several optimal design criteria so that each design criterion involved benefits in terms of its relative "high" efficiency. In this study, we proposed several composite design criteria taking the case of heteroscedastic model. WVhen the heteroscedasticity is present in the model. the well known equivalence theorem between 1)- and C-optimality no longer exists and furthermore their design characteristics are sometimes drastically different. We introduced three different design criteria for this purpose: constrained design, combined design, and minimax design criteria. While the first two methods do reflect the prior belief of experimenter, the last one does not take it into account. which is sometimes desirable. Also we extended this method to the case when there are uncertainties concerning the error structure in the model. A simple algorithm and concluslOn follow.On follow.

  • PDF

Q-learning to improve learning speed using Minimax algorithm (미니맥스 알고리즘을 이용한 학습속도 개선을 위한 Q러닝)

  • Shin, YongWoo
    • Journal of Korea Game Society
    • /
    • v.18 no.4
    • /
    • pp.99-106
    • /
    • 2018
  • Board games have many game characters and many state spaces. Therefore, games must be long learning. This paper used reinforcement learning algorithm. But, there is weakness with reinforcement learning. At the beginning of learning, reinforcement learning has the drawback of slow learning speed. Therefore, we tried to improve the learning speed by using the heuristic using the knowledge of the problem domain considering the game tree when there is the same best value during learning. In order to compare the existing character the improved one. I produced a board game. So I compete with one-sided attacking character. Improved character attacked the opponent's one considering the game tree. As a result of experiment, improved character's capability was improved on learning speed.

Global sensitivity analysis improvement of rotor-bearing system based on the Genetic Based Latine Hypercube Sampling (GBLHS) method

  • Fatehi, Mohammad Reza;Ghanbarzadeh, Afshin;Moradi, Shapour;Hajnayeb, Ali
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.549-561
    • /
    • 2018
  • Sobol method is applied as a powerful variance decomposition technique in the field of global sensitivity analysis (GSA). The paper is devoted to increase convergence speed of the extracted Sobol indices using a new proposed sampling technique called genetic based Latine hypercube sampling (GBLHS). This technique is indeed an improved version of restricted Latine hypercube sampling (LHS) and the optimization algorithm is inspired from genetic algorithm in a new approach. The new approach is based on the optimization of minimax value of LHS arrays using manipulation of array indices as chromosomes in genetic algorithm. The improved Sobol method is implemented to perform factor prioritization and fixing of an uncertain comprehensive high speed rotor-bearing system. The finite element method is employed for rotor-bearing modeling by considering Eshleman-Eubanks assumption and interaction of axial force on the rotor whirling behavior. The performance of the GBLHS technique are compared with the Monte Carlo Simulation (MCS), LHS and Optimized LHS (Minimax. criteria). Comparison of the GBLHS with other techniques demonstrates its capability for increasing convergence speed of the sensitivity indices and improving computational time of the GSA.

Parallel Implementations of Digital Focus Indices Based on Minimax Search Using Multi-Core Processors

  • HyungTae, Kim;Duk-Yeon, Lee;Dongwoon, Choi;Jaehyeon, Kang;Dong-Wook, Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.542-558
    • /
    • 2023
  • A digital focus index (DFI) is a value used to determine image focus in scientific apparatus and smart devices. Automatic focus (AF) is an iterative and time-consuming procedure; however, its processing time can be reduced using a general processing unit (GPU) and a multi-core processor (MCP). In this study, parallel architectures of a minimax search algorithm (MSA) are applied to two DFIs: range algorithm (RA) and image contrast (CT). The DFIs are based on a histogram; however, the parallel computation of the histogram is conventionally inefficient because of the bank conflict in shared memory. The parallel architectures of RA and CT are constructed using parallel reduction for MSA, which is performed through parallel relative rating of the image pixel pairs and halved the rating in every step. The array size is then decreased to one, and the minimax is determined at the final reduction. Kernels for the architectures are constructed using open source software to make it relatively platform independent. The kernels are tested in a hexa-core PC and an embedded device using Lenna images of various sizes based on the resolutions of industrial cameras. The performance of the kernels for the DFIs was investigated in terms of processing speed and computational acceleration; the maximum acceleration was 32.6× in the best case and the MCP exhibited a higher performance.

On the Euclidean Center Problem

  • Chwa, Kyung-Yong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.7 no.2
    • /
    • pp.41-48
    • /
    • 1982
  • This paper presents an efficient algorithm for finding a new facility(center) in the Euclidean plane in accordance with minimax criterion: that is, the facility is located to minimize the maximum weighted Euclidean distance. The method given in this paper involves computational geometry. Some possible extensions of this problem are also discussed.

  • PDF