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On the Euclidean Center Problem
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Abstract

This paper presents an efficient algorithm for finding a new facility(center) in the
Euclidean plane in accordance with minimax criterion: that is, the facility is located to
minimize the maximum weighted Euclidean distance. The method given in this paper
involves computational geometry. Some possible extensions of this problem are also
discussed.

1. INTRODUCTION

Let P={p,p,,...,p»} be a given set of points in the Euclidean plane E, representing the loca-
tions of » existing facilities. Let p be a point in the Euclidean plane E, to be determined as
the site of the new facility so as to minimize an appropriately defined cost function f(p). The
weight w; attached to the existing facility p; is a given non-negative number which represen-
ts interaction between the existing facility p; and the new facility p. If we define a cost function

fM(p), as the sum of the weighted distances, Z"; w;d(p;,p), then finding the location of p which
i=1

minimizes f7(p) is referred to as the general Fermat problem. This problem has received
considerable attention and several approaches (Kuhn’s modified gradient (1), hyper-boloid
approximation proccdure (2], etc.) have been developed. Unfortunately, it has been shown
that for »>5 this problem is in general not solvable by ruler-and-compass geometrical

constructions (8],
On the other hand, if we define a cost function f°(p) as the maximum cost, 113‘?‘} {w:d (p,
pSY Y ]

)}, then finding the location of p which minimzes f°(p) becomes the minimax version of
the general Fermat problem and we call this the Euclidean Center problem(or the minimax
single facility location problem). This problem arises when it is more important to provide
emergency (or user-oriented) services than long term total service.

In a special case when w;=1 for all 1<7/<#, this problem has a useful geometrical interp-
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retation 7. e. “find the center of the smallest circle which encloses all the points P”. Elzinga
and Hearn (4) presented an 0(»®) algorithm which, at each step, constructs a new circle
whose diameter is strictly greater than that of the previous circle, and Shamos and Hoey (5)
have developed an 0(» log ») algorithm using the farthest Voronoi diagram. But in general
case (involving weights other than 1), no one has made use of the special geometrical struct-
ure for this problem (6).

In the next section, we introduce the weighted farthest Voronoi diagram which will be used
as a main tool in solving geometric probiems.

2. THE WEIGHTED FARTHEST VORONOI DIAGRAM

Assume we are given a set P={p,p,,...,p,} of » points in the two dimensional Euclidean plane
E, with coordinates p;=(g;5;) and the non-negative weight w; associated with p; - | We define
the weighted farthest Voronoi region (WFVR)R; associated with p;, to be the region having
the property that the weighted distance from any x€R; to p; is not less than the weighted
distance to any other point p;eP— {p;}. More precisely,

Ri={(x€E,|wd (pi,%) = 1;}2;} {w;d(1;,2)}

where d(x,y) denotes the Euclidean distance between any two points x and y in the plane,
Consider any two points p; p;=P. The locus of points to which the weighted distance from p;
is equal to that from p; is either the perpendicular bisector of p; and p;, 4(p;,p) (when
w;=w;) or the circle, c(p;,p;), whose center cj; is at

(02— g 2 — b i? . .
( aiw; 2iwj blwl f;?} )thh I'adlllS rij= wzwjd(p:.pl>

wiZ__ij, » wiz_ ; Ia)iz_wjzl

(when w;+#w;).
Furthermore, if we define R;= {xEF,|wd(p;,x) >w;d(p;,x)}, then we have R,-=J.QiRij - It can

be seen that

inside the circle c(p;, ) if w;<w;

R;;= { outside the circle c(pip;) if 0 >w;

half plane containing p; defined by A(p;,p;) if wi=w;
It is clear that UR;=E, since any point in the plane must belong to some R;-We call the
union of the boundaries ofR;s (or '_LJ]_ (R:NR;)) the weighted farthest Voronoidiagram (WFVD),

denoted by WFVD(P), which is composed of pieces of some straight lines (k(p;p;)) and/or
circles (c(p;,p;)). An edge of WFVD is called a Voronoi line, denoted by (z,/), which represents
a part of c(p;,p;) (or A(p;, p;)) and has a property that for any point x=/(¢,/) and p,&P— {p;, p;},
Wid (i, x) =w;d(p;,x) = wd(Ps,x) With equality if and only if »=I(;, k) and x=i(j, k). An
intersection of Voronoi lines I(z, 7), 1(¢, k) is called a Voronoi point and denoted by u;;. Since
vijx has the property that wd(p; vija) =w;d(p;,vija) =@d(Pa,vijz), it can be easily seen that vij,
€I(j, k). Therefore, we can say that every Vornoi poiht is incident on at least three Voronoi
lines. (If a Voronoi point is incident on more than three Voronoi lines, we will regard it as a
multiple point). Note that it is possible that I(s, /) and I(:, k) meets at two points. An example
of WFVD is shown in Figure 1.
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3. ALGORITHM

Now we are going to show that the solution of the Euclidean center problem can be easily
obtained from the WFVD.

Lemma. Assume the WFVD for a given set of points, P={py,ps,...,pn}. is available. Let p;;
be the internal division point which is defined by the intersection point between the straight
line segment p;p; and c(p;,p;)(or A(p;,p;)). Then, there exist at most one internal division
point on the corresponding Voronoi line [(z, ) in the WFVD. In fact, if one exists, then it is
the optimum location point (Eucildean center).

Proof. Suppose there exist two internal division points py;, pu With 754, that is, p;EI(, 7).,
sk, D) and pipyy -

This implies that w;d(p;, p;;) =w;d (p;, p:;) > max {wad (Ds, bi;),wid (B, bi;)'} ¢)]
and wWid (D, pr1) =wid (By, prr) > max {wd (P, par) Wi, D)} 2)
Let p;;€R. ., and pu SRy 4, where a,a, (K, k) and B,8.< (i), /7).

Then we have w,, d(p., Pur) <wa, d(p;, Dij) 3
and wp, d(Dp,d(pa,, pi;) <wg, d(Dp, Dur) (4)

By (2) and (3), wp, d(pp,d(ps,, ta) <wad(2., pi;), and
by (1) and (4) w., d(pa, Bi;)<wpd(ps, Pa), Which is impossible.
Now suppose p;;&I(7, 7). Obviously wid(p;,0:;)=
?:21)5 {w4d(p4e, 2:)}, and for any other point x, either d(p;, p:;) <d(p:, %)

or d(p;, pi;) <d(p;, x). Thus the lemma is proved.
Theorem.

Let V' be the set of all Voronoi points in WFVD which is constructed for a given P. Suppose
P is an internal division point which appears on the corresponding Voronoi line. Then the
optimum point p* is in VU (5}.

Proof. We show that p* lies on the WFVD as follows: Suppose the optimum point p* &
WFVD. Then p* must lie inside one of the WFVRs, say p* =R, Let  be the intersection
point between the straight line p;p* and the boundary of R; (¢’ always exists since p; & R;
and the boundary of R; consists of Voronoi lines, Ui(, 73), Then p' lies on a Voronoi line,
say I(i, k). Since d(p;, ') <d(:, #*) and wd(s;, p')> wd(p;, ') for all p,&P, there exists a
point p" whose cost f°(?’) < f*(¢*). This leads to a contradiction. We already proved in the
previous lemma that if § exists, then p*=35. Thus we assume that  does not appear on the
corresponding Voronoi line. Suppose the optimum point lies on the Voronoi line [(7,7) but is
not a Voronol point. Let 2;;, be a Voronoi point which is incident to I(f,7) and is closer to
the straight line segment p;5; than the other Voronoi point. Then it is clear that f* (5*) =w;d
(bi, p*) > F (ijr) = 0id (P1, vijz), Thus p* lies on one of the Voronoi points.

So far we know that the optimum location is determined by either two points or three
points: If the optimum location is determined by two points, the optimum point is located at
the internal division point between those two points. If it is determined by three points (say
b4, pp and pc), then the optimum point is located at the Voronoi point, v4zc, which is inside



the triangle dpapstc, 0of the WFVD with respect to those thres points. Note that in the latter
case, there is only one Voronoi point inside the triangle and this point is also a Voronoi point
-0f the WFVD with respect to P. This leads to a straightforward algorithm to solve the
Euclidean center problem.
Algorithm.

Given a set of » points P={p,, p,, ..., £x} With @/s,
‘STEP ¢: Pick any point pye=P and Find pz=P such that wpd(pp, pa)>

m?x {wid (#;, pa)} for all p,=P.

Find the internal division point, p45 between p, and pp.
STEP 1: p*~pap and f(*)—wad(pa, 1*)
Find pc such that wed (po, p*) =max{w;d(p;, p*)}.
If f(p*) =wed(te p*), p* is the opt'imum point, STOP
otherwise, draw WFVD (p,4, p5) and find out which Voronoi Region
includes zo, say Ry,
//1f pceRp, then p, and R, are interchanged with pp and Ry, respectively
s0 that wad(pa, pc) =wpd(pe, 0c)//
If pac=R4, then pg—pe, GO TO STEP |
otherwise GO TO STEP 2
/] If pac=R,4, then either Voronoi point papc in WFVD ({P, vz pc)) is outside of
Apapptc or papc does not appear in WEFVD ({p4, £, 5c})//
“STEP 2: Draw WFVD (p4, 5, pc) and Find Voronoi point pspc which is inside
the triangle dpapatc. p*<pDanc, f(P*)—wad(pa, parc)
Find pp such that wpd(pp, p*) =max{wd(p;, 1*)}.
If f($%)2wpd(tp, £*), £* is the optimum point, STOP
otherwise, find out which Voronoi Region includes p,, say R,
If i) pap=R,, then pge—pp, GO TO STEP 1
ii) papERg, then po—pp, GO TO STEP 2
iii) papERc, then pge—pp, GO TO STEP 2.

Note that whenever new WFVD is obtained, we get f(»*) whose value is monotone increa-
:sing. Since there are only finitely many two-point and three-point sets, the process is finite.
.Example: Consider the set of 7 points as shown in Figure }

STEP 0: Suppose p,=(0,0) is chosen as ps. Then we have pp=p; and p,u=(5.833, 1. 667)

STEP 1: p*=pap, f($*)=6.067 and pc=p, are obtained.

Since f(p*) <w,d(p,, p*)=14.8 and po&sRy,
pa is interchanged with pz 7.e. we have py=p; and pp=p,.
Since pac=(5.57, 3.714) &Ry, pp is replaced by pc and return to STEP 1.

STEP 1: p*=pap=ps, J(P*)=11.157 and pc=p. are obtained.

Since f(4*) <wsd(ps, ps;) and pac=(5.875, 1.25)&Rp, go to STEP 2.

STEP 2: p*=panc=/rs2:=(5.327, 3.492) and f(p*)=11.206 are obtained.

Note that in this step the Voronoi point papc of WEVD ({pa, ps, #c}) exists and is
always inside of the triangle dp,pppc



Since f(p*) =max {w,d(#;, p*)}, we finally found the optimum
point p*=(5.327, 3.492) with f(p*)=11. 206

4. EUCLIDEAN M-CENTER PROBLEM

It is natural to consider locating several new facilities instead of a single facility. The

Euclidean m-center problem can be formulated as follows:

minimize f(X)=52% (w; - d(p;, X))
where P={p,, 0, ..., P»} iS & giv:en set of points in the plane representing existing » locations,
w; is a given non-negative weight on point p; representing interaction between »; and one of
the centers, X = {x;, x,, ..., ¥,} is a set of points in the plane to be determined as the site of
new facilities, and d(p;, X)=, 08 (d(p;, 5],

This problem is known to be NP-complete (7). Therefore, we suggest one of the possible
heuristic approaches. First, we will reduce Euclidean m-center problem to the minimum set
covering problem, and then apply a heuristic algorithm for the set covering problem.

Let X={x,, x,,..., xn} be an optimum solution to m-cénter problem. Let us define V (x;)=
{p;=Pld(p:, %) =d(p;, X))} and f(x)= max{w,d(p,, %)} Then, f(X)= max{(x,)} and P= UV(xl)-

Note that one may regard each x; as the center of V(x;). Since any “local center” for P’ CP is
determined by either two points or three points in P/(x;=P’ if | P’)=1), the number of all the
possible for candidates for center positions is finite: Let Y, be the set of all possible internal
division points and Y, be the set of all Voronoi points, which lie inside the corresponding tr-
iangle, of the WFVD with respect to any three points in P. If we let Z be the set of all
possible local centers, then Z=PUY,UY, Let ., be an “extreme” point which determines
local center z;&Z. Let us define r;=w, d(p.,2z;) and ['z;={p;&=P|w; d(p;,z;)>r;}. Then r; and
I'z; represent the radius of z; and the set of points “covered” by z; respectively. Without
loss of generality, assume that Z={z, 2, ..., 2} be ordered set such that the corresponding
values, 7;'s, are in an increasing. order. Note that an optimum value of f(X) is one of the
r’s and in particular if m=1, f(X)=r,. Therefore if we assume that an optimum solution X=
{2i,, zi,. .... 2.} is an ordered set, X has the following properties:
(1) X covers P, thatis, I'X=P.
(2) For any subset of Z, Z'={zy, 2, ..., 2} with r,<r;,
there does not exist a cover of P with its cardinality less than or equal to m.

Algorithm.
STEP 0: Find all the local centers z, zy, ..., z With cotresponding 7;'s and Iz/s. Define Z,=

{2y, 22, ..., 2} with appropriately assigned integer to s<(z.
STEP1: Find minimum cover, X, of P for a given Z,.

[F{X|>m, then increase index s by proper amount, GO TO STEP 1,

IF |X|<m, then decrease s by proper amount, GO TO STEP 1.

IF |X|=m, GO TO NEXT STEP.
STEP2: Let s’ be the maximum index in X.

se—s'—1, X*X.



Find minimum cover X of P for a given z,.
IF {X|>m, then X* is an optimum solution, STOP

otherwise repeat STEP2.

Since the problem of finding a minimum cover is also known to be NP-complete, a heuristic
algorithm for the set covering problem may be employed as a subproblem. Note that the time
complexity of the proposed algorithm depends heavily on the cardinality of Z which is obvio-
usly in the order of #°, As an example, the number of all the possible local centers for the
previous example (»=7) is 40 as detailed in Tablel. Thus, it may be important to determine
an initial index s in the proposed algorithm. There are two possible ways: it may be determ-
ined by (1) a proper value of r, and (2) a proper index assumed as a function of n(say, s=
(n—m+1n,m=2).

Table 1

z; De Location of z; l ri I Iz; } Zi [ De | Location of z; 7i ' Iz
1 1 ©.0) 0 Moet |37 6O ’ 6.0 1,3.7
2 2 2.8) 0 2| 22 1,2,4  (3.069,5.184)| 6,024 1.2,4,6
3 3 4,0) 0 3 2 1,53i 5.833,1.667)!  6.097 1.5
4 4 4,4) 0 o 24 | 1,56 (.77, 2. 008)l  6.116 1,56
5 5 7,2 0 5 25 1,5, 7, (6.108, 1. 135 6.213 15,7
6 6 (7,8 0 6 26 3,6 (4.75,2)l 6,408 1,3,6
7 7 (7,0 0 7 27 16,7  (6.222,1.618)] 6.429 1,5.6,7
8 1,3 (3,0) 3.0 1,3 28 3.5  (5.875,1. 25)5 6,760 1.3,5.7
9 2,6 (3.667,8)| 3.333 2.6 20 | 356 (58221.322) 6771 13,56
10 4,6 (4.6,4.8) 4.0 4,6 30 36,7 (5.858,1.298)| 6.799 1,3,5,.6,7
11 5,7 (7.571,1,429)]  4.04 57 31 3. 4f (4,2.286)  6.857 1,3,4,6
12 1,4 (3.3,3.2)]  4.525 L4 32 4,5 (5.667,2.889) 8.012 14,56
13 5,6 (7,3) 5.0 560 33 | 3,45 (5.380,2.426) 8.374 1,3,4,56
14 1,6 (3.5,4) 5.315| 1,4,6] 34 4,7 (5.667,2.667) 8.537 1,4,5,6,7
15 1,2 (1.33,5.33)] 5.497 L2 35 3,47 (5.478,2.447) 8.577) 1,3,4,5.6.7
16 6,7 (8.33,2.66)| 5.497 6,7] 36 2,3 (3.2,3.2)] 9.895 1,2,3,4,6
17 5,6,7| (7.954,2.557) 5.526/ 5,6,7| 37 | 2,7 (5.5,4) 10.630 1,2,4,6,7
18 1,2,6) (2.134,5.195)| 5.616] 1,2,6| 38 | 23,7 (4.8953.470)) 10.751] 1,2,3,4,6,7
19 2,4 (3.33,5.33)  5.963 24,6/ 39 2,5 (5.57,3.714)| 11.157] 1,2,4,5,6,7
20 | L7 (6.0 6.00 1,37 40 l 23,5  (5.327,3.492)) 11.206 1,2,3.4,5.6,7

1-Center Zao 11. 206

2-Center Z28 Zie 6. 760

3-Center Z1a 211 2 5.963

4-Center Z11 R10 38 Z2 4.04

5-Center Zo 28 21 Zs Za 3.33

6-Center 2827 26 35 Z4 Z2 2.0

V. FURTHER REMARKS

As a final remark, there is another extension of the Euclidean center problem, calledthe
Euclidean minimax multifacility location problem, This problem can be formulated as follows:
Minimize max {w;d(pi, x)7=1,....m, 71=1,...,%u:

upd (x5, x,) 1< 7<k<m}



where P={p,, by, ..., 0x} is a given set of points in the plane representing the locations of
existing facilities, X = {x,, ;, ..., ¥} i$ a set of points in the plane to be determined as the site
of new facilities, w;; is a given non-negative weight representing interaction between the new
facility at x; and the existing facility at p;, and #;; is a given non-negative weight represen-
ting interaction between new facilities (x; and x;).

Love et al (8) and Elzinga et al [9) attacked this problem using non-linear programming m-
ethods. From their computational results in (9) it can be seen that if the number of primal
constraints, ma+m(m—1)/2, is less than 200, the problem can probably be solved in a few
minutes of computer time.

Note that if m=1, this problem beconres the Euclidean center problem which is solved in
section 3. Also if #;,=0 for all 7 and %, this problem can be solved by simply repeating our
algorithm in the previous section s times. Thus there may be some future in solving the
general problem by considering and adjusting the solution which is obtained assuming that u;,
=0 for all j and k.
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