Browse > Article
http://dx.doi.org/10.12989/sem.2018.68.5.549

Global sensitivity analysis improvement of rotor-bearing system based on the Genetic Based Latine Hypercube Sampling (GBLHS) method  

Fatehi, Mohammad Reza (Mechanical Engineering Department, Shahid Chamran University of Ahvaz)
Ghanbarzadeh, Afshin (Mechanical Engineering Department, Shahid Chamran University of Ahvaz)
Moradi, Shapour (Mechanical Engineering Department, Shahid Chamran University of Ahvaz)
Hajnayeb, Ali (Mechanical Engineering Department, Shahid Chamran University of Ahvaz)
Publication Information
Structural Engineering and Mechanics / v.68, no.5, 2018 , pp. 549-561 More about this Journal
Abstract
Sobol method is applied as a powerful variance decomposition technique in the field of global sensitivity analysis (GSA). The paper is devoted to increase convergence speed of the extracted Sobol indices using a new proposed sampling technique called genetic based Latine hypercube sampling (GBLHS). This technique is indeed an improved version of restricted Latine hypercube sampling (LHS) and the optimization algorithm is inspired from genetic algorithm in a new approach. The new approach is based on the optimization of minimax value of LHS arrays using manipulation of array indices as chromosomes in genetic algorithm. The improved Sobol method is implemented to perform factor prioritization and fixing of an uncertain comprehensive high speed rotor-bearing system. The finite element method is employed for rotor-bearing modeling by considering Eshleman-Eubanks assumption and interaction of axial force on the rotor whirling behavior. The performance of the GBLHS technique are compared with the Monte Carlo Simulation (MCS), LHS and Optimized LHS (Minimax. criteria). Comparison of the GBLHS with other techniques demonstrates its capability for increasing convergence speed of the sensitivity indices and improving computational time of the GSA.
Keywords
global sensitivity analysis; sobol method; genetic based Latine hypercube sampling; rotor-bearing system; uncertainty analysis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Iooss, B. and Lemaitre, P. (2015), A Review on Global Sensitivity Analysis Methods, Meloni, C. and Dellino, G. Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications, Springer.
2 Jafari, P. and Jahani, E. (2016), "Reliability sensitivities with fuzzy random uncertainties using genetic algorithm", Struct. Eng. Mech., 60(3), 413-431.   DOI
3 Jin, R., Chen, W. and Sudjianto, A. (2005), "An efficient algorithm for constructing optimal design of computer experiments", J. Stat. Plan. Infer., 51, 268-287.
4 Johnson, M.E., Moore, L.M. and Ylvisaker, D. (1990), "Minimax and Maximin distance design", J. Stat. Plan. Infer., 24, 131-148.
5 Jones, A.B. and Poplawski, J. (1966), "A computer study of design parameters on rolling element bearing performance", Proceedings of the Bearings Conference at Dartmouth University.
6 Jourdan, A. (2012), "Global sensitivity analysis using complex linear models", 22, 823-831.   DOI
7 Benaroya, H. and Rehak, M. (1988), "Finite element methods in probabilistic structural analysis: A selective review", Appl. Mech. Rev., 41(5), 201-213.   DOI
8 Campolongo, F., Carboni, J. and Saltelli, A, (2007), "An effective screening design for sensitivity analysis of large models", Environ. Modell. Softw., 22, 1509-1518.   DOI
9 Crombecq, K. and Dhaene, T. (2006), "Generating sequential space-silling designs using genetic algorithms and Monte Carlo methods", Comput. Indust. Eng., 50, 503-527.   DOI
10 De Lozzo, M. and Marrel, A. (2015), "Estimation of the derivative-based global sensitivity measures using a Gaussian process metamodel", SIAM/ASA J. Uncertain. Quantific., 4, 708-738.
11 Park, J. (1994), "Optimal Latin-hypercube designs for computer experiments", J. Stat. Plan. Infer., 39, 95-111.   DOI
12 Tondel, K., Vik, J.O., Martens, H., Indahl, U.G., Smith, N. and Omholt, S.W. (2013), "Hierarchical multivariate regression-based sensitivity analysis reveals complex parameter interaction patterns in dynamic models", Chemometr. Intellig. Laborat. Syst., 120, 25-41.   DOI
13 Vorechovsky, M. and Novak, D. (2009), "Correlation control in small-sample Monte Carlo type simulations I: A simulated annealing approach", Prob. Eng. Mech., 24, 452-462.   DOI
14 Wei, J.J. and Lv, Z.R. (2015), "Structural damage detection including the temperature difference based on response sensitivity analysis", Struct. Eng. Mech., 53(2), 249-260.   DOI
15 Ye, K.Q., Li, W. and Sudjianto, A. (2000), "Algorithmic construction of optimal symmetric Latin hypercube designs", J. Stat. Plann. Infer., 90, 145-159.   DOI
16 Zhao, J. and Wang, C. (2014), "Robust topology optimization under loading uncertainty based on linear elastic theory and orthogonal diagonalization of symmetric matrices", Comput. Meth. Appl. Mech. Eng., 273, 204-218.   DOI
17 Pate-Cornell, M.E. (1996), "Uncertainties in risk analysis: Six levels of treatment", Reliab. Eng. Syst. Safety, 54, 95-111.   DOI
18 Petryna, Y.S. and Kratzig, W.B. (2005), "Compliance-based structural damage measure and its sensitivity to uncertainties", Comput. Struct., 83, 1113-1133.   DOI
19 Rennen, G., Husslage, B., Van Dam, E.R. and Hertog, D. (2010), "Nested maximin Latin hypercube designs", Struct. Multidisc. Optim., 41, 371-395.   DOI
20 Rafal, S., Piotr, T. and Michal, K. (2007), "Efficient sampling techniques for stochastic simulation of structural systems", Comput. Assist. Mech. Eng. Sci., 14, 127-140.
21 Ritto, T.G., Lopez, R.H., Sampaio, R. and Souza, J.E. (2011), "Robust optimization of a flexible rotor-bearing system using the Campbell diagram", Eng. Optim., 43, 77-96.   DOI
22 Saltelli, A., Chan, K. and Scott, E.M. (2000a), Sensitivity Analysis, Wiley Series in Probability and Statistics, Wiley.
23 Faber, M.H. (2005), "On the treatment of uncertainties and probabilities in engineering decision analysis", J. Offshore Mech. Arct. Eng., 127, 243-248.   DOI
24 Didier, J., Faverjon, B. and Sinou, J.J. (2012), "Analyzing the dynamic response of a rotor system under uncertain parameters by polynomial chaos expansion", J. Vibr. Contr., 18, 587-607.   DOI
25 Didier, J., Sinou, J.J. and Faverjon, B. (2012), "Study of the nonlinear dynamic response of a rotor system with faults and uncertainties", J. Sound Vibr., 331, 671-703.   DOI
26 Duchereau, J. and Soize, C. (2003), "Transient dynamic induced by shocks in stochastic structures", Appl. Stat. Probab. Civil ICASP, 9, 1-6.
27 Gan, C., Wang, Y., Yang, S. and Cao, Y. (2014), "Nonparametric modeling and vibration analysis of uncertain Jeffcott rotor with disc offset", Int. J. Mech. Sci., 76, 126-134.
28 Saltelli, A., Tarantola, S., Campolongo, F. and Ratto, M. (2004), Sensitivity Analysis in Practice, A guide to Assesing Scientific Models, John Wiley & Sons, U.S.A.
29 Saltelli, A., Ratto, M., Andres, T., Cariboni, J., Gatelli, D., Tarantola, S., Campolongo, F. and Saisana, M. (2008), Global Sensitivity Analysis, The Primer, John Wiley & Sons, U.S.A.
30 Saltelli, A., Tarantola, S. and Campolongo, F. (2000b), "Sensitivity analysis as an ingredient of modeling", Stat. Sci., 15, 379-390.
31 Sepahvand, K. and Marburg, S. (2013), "On construction of uncertain material parameters using generalized polynomial chaos expansion from experimental data", Proc. IUTAMG., 4-17.
32 Sinou, J.J. and Jacqueliin, E. (2015), "Influence of polynomial chaos expansion order on an uncertain asymmetric rotor system response", Mech. Syst. Sign. Proc., 50, 718-731.
33 Sobol, I.M. (1993), "Sensitivity analysis for non-linear mathematical models", Math. Model. Comput. Exper., 1, 407-414.
34 Szolc, T., Tauzowski, P., Stocki, R. and Knabl, J. (2009), "Damage Identification in vibrating rotor-shaft systems by efficient sampling approach", Mech. Syst. Sign. Proc., 23, 1615-1633.   DOI
35 Sobol, I.M. (1993), "Sensitivity analysis for non-linear mathematical models", Math. Model. Comput. Exper., 1, 407-410.
36 Soize, C. (2000), "A nonparametric model of random uncertainties for reduced matrix models in structural dynamics", Probab. Eng. Mech., 15, 277-294.   DOI
37 Stocki, R., Szolc, T., Tauzowski, P. and Knabel, J. (2012), "Robust design optimization of the vibrating rotor-shaft system subject to selected dynamic constraints", Mech. Syst. Sign. Proc., 29, 34-44.   DOI
38 Krishnaiah, P.R. (1981), Analysis of Variance, Elsevier, New York, U.S.A.
39 Liao, H. (2014), "Global resonance optimization analysis of nonlinear mechanical systems: Application to the uncertainty quantification problems in rotor dynamics", Commun. Nonlin. Sci. Numer. Simulat., 19(9), 3323-3345.   DOI
40 Kundu, A., DiazDelaO, F.A., Adhikari, S. and Friswell, M.I. (2014), "A hybrid spectral and metamodeling approach for the stochastic finite element analysis of structural dynamic systems", Comput. Meth. Appl. Mech. Eng., 270, 201-219.   DOI
41 Lim, T.C. and Singh, R. (1990), "Vibration transmission through rolling element bearings, part I: Bearing stiffness formulation", J. Sound Vibr., 139, 179-199.   DOI
42 Liu, Y., Jeong, H.K. and Collette, M. (2016), "Efficient optimization of reliability-constrained structural design problems including interval uncertainty", Comput. Struct., 277, 1-11.
43 Mirzaee, A., Shayanfar, M. and Abbasnia, R. (2015), "A novel sensitivity method to structural damage estimation in bridges with moving mass", Struct. Eng. Mech., 54(6), 1217-1244.   DOI
44 McKay, M.D., Conover, W.J. and Beckman, R.J. (1979), "A comparison of three methods for selecting values of input variables in the analysis of output from a computer code", Technometr., 21(2), 239-245.   DOI
45 Michael, D., Shields, N. and Zhang, J. (2016), "The generalization of Latin hypercube sampling", Reliab. Eng. Syst. Safety, 148, 96-108.   DOI
46 Minh, D.D., Gao, W. and Song, C. (2016), "Stochastic finite element analysis of structures in the presence of multiple imprecise random field parameters", Comput. Meth. Appl. Mech. Eng., 300, 657-688.   DOI
47 Mitchell, T.J. (1974), "Computer construction of d-optimal first-order designs", Technometr., 16, 211-220.
48 Morris, M.D. (1991), "Factorial sampling plans for preliminary computational experiments", Technometr., 33, 161-174.   DOI
49 Muscolino, G., Santoro, R. and Sofi, A. (2016), "Reliability assessment of structural systems with interval uncertainties under spectrum-compatible seismic excitation", Probab. Eng. Mech., 44, 138-149.   DOI
50 Morris, M.D. and Mitchell, T.J. (1995), "Exploratory designs for computer experiments", J. Stat. Plan. Infer., 43, 381-402.   DOI
51 Olsson, A.M.J. and Sandberg, G.E. (2002), "On Latin hypercube sampling for stochastic finite element analysis", J. Eng. Mech., 128(1), 121-125.   DOI
52 Olsson, G., Sandberg, O. and Dahlblom. (2003), "On Latin hypercube sampling for structural reliability analysis structural safety", 25, 47-68.   DOI
53 Paolino, D.S., Chiandussi, G. and Belingardi, G. (2013), "Uncertainty in fatigue loading: Consequences on statistical evaluation of reliability in service", Probab. Eng. Mech., 33, 38-46.   DOI
54 Gobbato, M., Conte, J., Koshmatka, J. and Farra, C. (2012), "A reliability-based framework of fatigue damage prognosis of composite aircraft structures", Probab. Eng. Mech., 29(1), 176-188.   DOI
55 Grosso, A., Jamali, A.R.M.J.U. and Locatelli, M. (2009), "Finding maximin Latin hypercube designs by iterated local search heuristics", Eurz. Oper. Res. J., 197(2), 541-547.   DOI
56 Guo, X., Zhao, X., Zhang, W., Yan, J. and Sun, G. (2015), "Multi-scale robust design and optimization considering load uncertainties", Comput. Meth. Appl. Mech. Eng., 283, 994-1009.   DOI
57 Guo, Y. and Parker, R.G. (2012), "Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model", Mech. Mach. Theor., 51, 32-45.   DOI
58 Hickernell, F.J. (1998), "A generalized discrepancy and quadrature error bound", Math. Comput., 67, 299-322.   DOI