• Title/Summary/Keyword: minimal surface

Search Result 415, Processing Time 0.029 seconds

NURBS Surface Rendering of Sculpting Effect Using Multiresolution Surface Trimming for Spatial Virtual Design (공간 가상 디자인을 위한 다해상도 곡면트리밍을 이용한 넙스곡면 조각효과 렌더링)

  • Kwon, Jeong-Hoon;Kim, Hee-Jun;Chai, Young-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.6
    • /
    • pp.403-411
    • /
    • 2006
  • NURBS surfaces have been widely used in engineering design since it can create a smooth surface using minimal numbers of data. But deformation of the surfaces is quite difficult especially for the detailed modification. Also, NURBS surface deformation processes need many inputs, and it is not easy to be implemented in 3D virtual system. In this paper, both the surface trimming and multi-resolution surface are used for the detailed sculpting including sharp edges of NURBS surface. QuadTree is used to separate cleanly the target surface with the surface for sculpting effect. Simple user strokes are also used for the sculpting target curves and GOMS(Goals, Operators, Methods, Selection Rules) model is applied to verify the efficiency of the proposed sculpting process.

Parametric Shape Design and CNC Tool Path Generation of a Propeller Blade (프로펠러 블레이드의 형상설계 및 CNC 공구경로 생성)

  • 정종윤
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.46-59
    • /
    • 1998
  • This paper presents shape design, surface construction, and cutting path generation for the surface of marine ship propeller blades. A propeller blade should be designed to satisfy performance constraints that include operational speed which impacts rotations per minutes, stresses related to deliverable horst power, and the major length of the marine ship which impacts the blade size and shape characteristics. Primary decision variables that affect efficiency in the design of a marine ship propeller blade are the blade diameter and the expanded area ratio. The blade design resulting from these performance constraints typically consists of sculptured surfaces requiring four or five axis contoured machining. In this approach a standard blade geometry description consisting of blade sections with offset nominal points recorded in an offset table is used. From this table the composite Bezier surface geometry of the blade is created. The control vertices of the Hazier surface patches are determined using a chord length fitting procedure from tile offset table data. Cutter contact points and path intervals are calculated to minimize travel distance and production time while maintaining a cusp height within tolerance limits. Long path intervals typically generate short tool paths at the expense of increased however cusp height. Likewise, a minimal tool path results in a shorter production time. Cutting errors including gouging and under-cut, which are common errors in machining sculptured surfaces, are also identified for both convex and concave surfaces. Propeller blade geometry is conducive to gouging. The result is a minimal error free cutting path for machining propeller blades for marine ships.

  • PDF

GEOMETRIC CHARACTERIZATIONS OF CANAL SURFACES IN MINKOWSKI 3-SPACE I

  • Fu, Xueshan;Jung, Seoung Dal;Qian, Jinhua;Su, Mengfei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.867-883
    • /
    • 2019
  • The canal surfaces foliated by pseudo spheres $\mathbb{S}_1^2$ along a space curve in Minkowski 3-space are studied. The geometric properties of such surfaces are shown by classifying the linear Weingarten canal surfaces, the developable, minimal and umbilical canal surfaces are discussed at the same time.

변분법과 최대.최소 : 역사적 고찰

  • 한찬욱
    • Journal for History of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2004
  • In this paper we investigate the origin of the variational calculus with respect to the extremal principle. We also study the role the extremal principle has played in the development of the calculus of variations. We deal with Dido's isoperimetric problem, Maupertius's least action principle, brachistochrone problem, geodesics, Johann Bernoulli's principle of virtual work, Plateau's minimal surface and Dirichlet principle.

  • PDF

Three-dimensional finite element analysis of the stress distribution and displacement in different fixation methods of bilateral sagittal split ramus osteotomy

  • Yun, Kyoung In;Cho, Young-Gyu;Lee, Jong-Min;Park, Yoon-Hee;Park, Myung-Kyun;Park, Je Uk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.5
    • /
    • pp.271-275
    • /
    • 2012
  • Objectives: This study evaluated a range of fixation methods to determine which is best for the postoperative stabilization of a mandibular osteotomy using three-dimensional finite element analysis of the stress distribution on the plate, screw and surrounding bone and displacement of the lower incisors. Materials and Methods: The model was generated using the synthetic skull scan data, and the surface model was changed to a solid model using software. Bilateral sagittal split ramus osteotomy was performed using the program, and 8 different types of fixation methods were evaluated. A vertical load of 10 N was applied to the occlusal surface of the first molar. Results: In the case of bicortical screws, von-Mises stress on the screws and screw hole and deflection of the lower central incisor were minimal in type 2 (inverted L pattern with 3 bicortical repositioning screws). In the case of plates, von-Mises stress was minimal in type 8 (fixation 5 mm above the inferior border of the mandible with 1 metal plate and 4 monocortical screws), and deflection of the lower central incisor was minimal in types 6 (fixation 5 mm below the superior border of the mandible with 1 metal plate and 4 monocortical screws) and 7 (fixation 12 mm below the superior border of the mandible with 1 metal plate and 4 monocortical screws). Conclusion: Types 2 and 6 fixation methods provide better stability than the others.

Effects of Temperature on the Activity of Pulmonary Surfactant of the Rabbit (온도(溫度)가 가토(家兎) 폐포표면(肺胞表面) 활성물질(活性物質)의 활성도(活性度)에 미치는 영향(影響))

  • Kwon, Koing-Bo
    • The Korean Journal of Physiology
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 1973
  • Though it has been reported by Clements et al. and Avery et al. that the activity of the pulmonary surfactant can be altered by the temperature changes, a conclusive evidence of the effects of temperature on the surfactant system of the lung is yet to come. In the present study, an attempt was made to observe possible effects of a few different degrees of temperature on the activity of the pulmonary surfactant of the rabbit in vivo and in vitro. The rabbit was sacrificed by blood shedding and both lungs were completely removed. The lung washings, obtained by gently lavaging the left lung with saline, was placed at 1) 4C for 1, 5, 10, 15, 30 and 40 days, and 2) 20C for 1, 2, 3, 4, 5 and 7 days for in vitro experiment. For in vivo experiment, the rabbit was placed at 4C for 4, 8, 12 and 24 hours, and the lung lavage was prepared as described above in the in vitro experiment. Tension-area (T-A) diagram of the lung lavage was recorded automatically by a modified. Langmuir-Wilhelmy balance with a synchronized recording system. The surface tensions thus obtained were compared with those of the normal rabbit, and the results are summarized as follows: 1. The maximal surface tension, minimal surface tension and stability index of the normal rabbit lung lavage were $52.5{\pm}2.3\;dynes/cm,\;4.9{\pm}2.3\;dynes/cm$ and 1.65, respectively. 2. In the group where the lung lavage was placed at 4C in vitro, the maximal and minimal surface tensions, and stability index did not show any noticeable changes comparing with the normal values up to 30 days. On the 40th day of the experiment, a tendency of a slight increase in the surface tensions was observed but the change was not significant. 3. When the lung lavage was placed at 20 C in vitro, the maximal surface tension did not show any appreciable change comparing with the normal except on the 7 th day with a slight increase. The minimal surface tension showed an increased value from the 2nd day, and on the 5 th and 7 th experimental day, markedly increased value was observed. The stability index, on the other hand. showed a marked decrease throughout the entire experiment with the value of 0.71 and 0.53 on the 5th and 7 th day, respectively. 4. In the group where the rabbit was placed at 4 C in vivo, the maximal surface tensions and stability index of the lung lavage showed little change from the normal. The minimal surface tension at 12 experimental hour showed a slight increase, but it returned to the normal value at 24 hour.

  • PDF

Toroidal Manifolds and Dehn Fillings on Links

  • Sayari, Nabil
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.335-340
    • /
    • 2007
  • Let M be a hyperbolic 3-manifold such that ${\partial}M$ has at least two boundary tori ${\partial}_oM$ and ${\partial}_1M$. Suppose that M contains an essential orientable surface P of genus $g$ with one outer boundary component ${\partial}_oP$, lying in ${\partial}_oM$ and having slope ${\lambda}$ in ${\partial}_oM$, and $p$ inner boundary components ${\partial}_iP$, $i=1$, ${\cdots}$, $p$, each having slope ${\alpha}$ in ${\partial}_1M$. Let ${\beta}$ be a slope in ${\partial}_1M$ and suppose that $M({\beta})$ is toroidal. Let $\hat{T}$ be a minimal essential torus in $M({\beta})$, which means that $\hat{T}$ is pierced a minimal number of times by the core of the ${\beta}$-Dehn filling, among all essential tori in $M({\beta})$. Let $T=\hat{T}{\cap}M$ and denote by $t$ the number of components of ${\partial}T$. In this paper we prove: (i) if $t{\geq}3$, then ${\Delta}({\alpha},{\beta}){\leq}6+\frac{10g-5}{p}$, (ii) If $t=2$, then ${\Delta}({\alpha},{\beta}){\leq}13+\frac{24g-12}{p}$, (iii) If $t=1$, then ${\Delta}({\alpha},{\beta}){\leq}1$.

  • PDF

Designing Laser Pulses for Manipulating the Interior Structure of Solids (고체 내부의 구조적 변화를 위한 Laser Pulse의 설계)

  • Kim, Young Sik
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.14-22
    • /
    • 1995
  • This paper is concerned with the design of optimal surface heating patterns that result in focusing acoustic energy inside a subsurface target volume at a specified target time. The surface of the solid is heated by an incident laser beam which gives rise to shear and compressional waves propagating into the solid. The optimal heating design process aims to achieve the desired energy focusing at the target with minimal laser power densities and minimal system disturbance away from the target. The optimality conditions are secured via the conjugated gradient method and by the finite element method along with using the half-space Green's function matrix. Good quality energy focusing is achived with the optimal designs reflecting the high directivity of the photothermally generated shear wave patterns.

  • PDF

Effect of Sub-minimal Inhibitory Concentration of Chlorhexidine on Biofilm Formation and Coaggregation of Early Colonizers, Streptococci and Actinomycetes

  • Lee, So Yeon;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • v.41 no.4
    • /
    • pp.209-215
    • /
    • 2016
  • Chlorhexidine has long been used in mouth washes for the control of dental caries, gingivitis and dental plaque. Minimal inhibitory concentration (MIC) is the lowest concentration of an antimicrobial substance to inhibit the growth of bacteria. Concentrations lower than the MIC are called sub minimal inhibitory concentrations (sub-MICs). Many studies have reported that sub-MICs of antimicrobial substances can affect the virulence of bacteria. The aim of this study was to investigate the effect of sub-MIC chlorhexidine on biofilm formation and coaggregation of oral early colonizers, such as Streptococcus gordonii, Actinomyces naeslundii and Actinomyces odontolyticus. The biofilm formation of S. gordonii, A. naeslundii and A. odontolyticus was not affected by sub-MIC chlorhexidine. However, the biofilm formation of S. mutans increased after incubation with sub-MIC chlorhexidine. In addition, cell surface hydrophobicity of S. mutans treated with sub-MIC of chlorhexidine, decreased when compared with the group not treated with chlorhexidine. However, significant differences were seen with other bacteria. Coaggregation of A. naeslundii with A. odontolyticus reduced by sub-MIC chlorhexidine, whereas the coaggreagation of A. naeslundii with S. gordonii remained unaffected. These results indicate that sub-MIC chlorhexidine could influence the binding properties, such as biofilm formation, hydrophobicity and coaggregation, in early colonizing streptococci and actinomycetes.