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GEOMETRIC CHARACTERIZATIONS OF CANAL

SURFACES IN MINKOWSKI 3-SPACE I

Xueshan Fu, Seoung Dal Jung, Jinhua Qian, and Mengfei Su

Abstract. The canal surfaces foliated by pseudo spheres S21 along a

space curve in Minkowski 3-space are studied. The geometric proper-
ties of such surfaces are shown by classifying the linear Weingarten canal

surfaces, the developable, minimal and umbilical canal surfaces are dis-

cussed at the same time.

1. Introduction

In 1850, Monge first investigated canal surfaces in Euclidean 3-space which
is the envelope of a moving sphere whose centers lie on a space curve. The
characters of such surfaces have been studied by many experts and geometers
[2], [9]. The authors of [2] presented the relationships between the Gaussian
curvature, mean curvature and the second Gaussian curvature of canal surfaces.
Furthermore, the canal surfaces were classified from different viewpoints, such
as the Weingarten canal surfaces, the linear Weingarten canal surfaces and
the canal surfaces whose Gauss map satisfies some conditions [1], [6]. With
the development of theory of relativity, physicians and geometers extended the
topics in classical differential geometry of Riemannian manifolds to that of
Lorentzian manifolds. As a nature idea, the canal surfaces can be extended
into the spaces with indefinite metric, especially Mikowski 3-space.

Let E3
1 be Minkowski 3-space with natural Lorentzian metric

〈·, ·〉 = dx21 + dx22 − dx23
in terms of the natural coordinate system (x1, x2, x3). A vector υ∈E3

1 is said
to be spacelike if 〈υ, υ〉 > 0 or υ = 0; timelike if 〈υ, υ〉 < 0; null (lightlike) if

〈υ, υ〉 = 0, respectively. The norm of a vector v is given by ‖v‖ =
√
|〈v, v〉|.

The timelike or lightlike vector is said to be causal [3]. Due to the causal
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character of the tangent vector of a space curve, the curves in Minkowski space
can be divided into spacelike curve, timelike curve or null curve. The surfaces
are called timelike surface, spacelike surface or lightlike surface if its normal
vector is spacelike, timelike or lightlike.

It is well known that Snq , Hnq are complete semi-Riemannian manifolds with

index q of constant sectional curvature r−2 and −r−2, and Qnq is degenerate
hypersurface in Emq respectively. Especially, the semi-Riemannian manifolds
En1 , Sn1 and Hn1 are known as the Minkowski space, the de Sitter space and
the anti-de Sitter space. These spaces with index 1 are called Lorentzian space
forms (or non-degenerated space forms) and Qn1 degenerated space form.

Let p be a point fixed in Emq and r > 0 be a constant. Then the pseudo-
Riemannian hypersphere is defined by

Snq (p, r) = {x ∈ En+1
q : 〈x− p, x− p〉 = r2};

the pseudo-Riemannian hyperbolic space is defined by

Hnq (p, r) = {x ∈ En+1
q+1 : 〈x− p, x− p〉 = −r2};

the pseudo-Riemannian lightlike cone (quadric cone) is defined by

Qnq = {x ∈ En+1
q : 〈x− p, x− p〉 = 0}.

Similar to the generating process of canal surfaces in E3, a canal surface in
E3
1 can be obtained as the envelope of a family of pseudo spheres S21, pseudo

hyperbolic spheres H2
0 or lightlike cones Q2 whose centers lie on a space curve.

In 2016, A. Ucum, K. Ilarslan presented the explicit parametrizations of canal
surfaces in E3

1 and some types of the linear Weingarten tubular surfaces are
discussed in [8].

In order to do a complete geometric study for canal surfaces in Minkowski
3-space, we concern on the canal surfaces foliated by three space forms along
a space curve (resp. spacelike curve, timelike curve or null curve). First, we
denote some notation for different kinds of canal surfaces and review some basic
facts, then the geometric properties of canal surfaces are given by discussing the
linear Weingarten canal surfaces. The main purposes of the present work is to
classify the canal surfaces foliated by pseudo spheres S21 along a space curve in
E3
1, such as the linear Weingarten canal surfaces, the developable canal surfaces,

the minimal canal surfaces and the umbilical canal surfaces.
All the surfaces we are dealing with are smooth, regular and topologically

connected unless otherwise stated.

2. Preliminaries

In this section, we review some basic facts for curves and canal surfaces in
Minkowski 3-space.

Let a = (a1, a2, a3) and b = (b1, b2, b3) be vectors in E3
1. Then their scalar

product is given by

〈a, b〉 = a1b1 + a2b2 − a3b3
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and the exterior product by

a× b =

∣∣∣∣∣∣
e1 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =

(∣∣∣∣a2 a3
b2 b3

∣∣∣∣ , ∣∣∣∣a3 a1
b3 b1

∣∣∣∣ ,− ∣∣∣∣a1 a2
b1 b2

∣∣∣∣) ,
where {e1, e2, e3} is an orthonormal basis in E3

1. One can have

e1 × e2 = −e3, e2 × e3 = e1, e3 × e1 = e2.

Let c(s) : I → E3
1 be a space curve with the moving Frenet frame {α, β, γ}

consisting of the tangent vector α, the principal normal vector β and the bi-
normal vector γ, respectively.

Case 1. Let c = c(s) be a spacelike curve parameterized by arc length s.
Due to the causal character of the principal normal vector, it can be divided
into the following two cases:

Case 1.1. If 〈c′′(s), c′′(s)〉 6= 0, the following Frenet equations are satisfied

α′(s) = κ(s)β(s), β′(s) = −εκ(s)α(s) + τ(s)γ(s), γ′(s) = τ(s)β(s),

where 〈α, α〉 = 1, 〈β, β〉 = ε = ±1, 〈γ, γ〉 = −ε, 〈α, β〉 = 〈α, γ〉 = 〈γ, β〉 = 0.
The functions κ(s) and τ(s) are called the curvature and the torsion of c(s),
respectively. When ε = 1, c(s) is called the first kind spacelike curve and the
second kind spacelike curve when ε = −1.

Case 1.2. If 〈c′′(s), c′′(s)〉 = 0, the Frenet equations are given by

α′(s) = β(s), β′(s) = κ(s)β(s), γ′(s) = −α(s)− κ(s)γ(s),

where 〈α, α〉 = 〈β, γ〉 = 1, 〈β, β〉 = 〈γ, γ〉 = 〈α, β〉 = 〈α, γ〉 = 0. The function
κ(s) is called the curvature of c(s). Such kind spacelike curve is said to be null
type spacelike curve.

Case 2. Let c = c(s) be a timelike curve parameterized by arc length s.
Then the following Frenet equations are satisfied

α′(s) = κ(s)β(s), β′(s) = κ(s)α(s)− τ(s)γ(s), γ′(s) = τ(s)β(s),

where 〈α, α〉 = −1, 〈β, β〉 = 〈γ, γ〉 = 1, 〈α, β〉 = 〈α, γ〉 = 〈γ, β〉 = 0. Similar to
spacelike curves, the functions κ(s) and τ(s) are called the curvature and the
torsion of c(s), respectively.

Case 3. Let c = c(s) be a null curve parameterized by null arc length s (i.e.,
‖c′′(s)‖ = 1). Then the following Frenet equations are given by

α′(s) = β(s), β′(s) = κ(s)α(s)− γ(s), γ′(s) = −κ(s)β(s),

where 〈α, α〉 = 〈γ, γ〉 = 〈α, β〉 = 〈γ, β〉 = 0, 〈α, γ〉 = 〈β, β〉 = 1. And the
function κ(s) is called the null curvature of c(s).

Definition. The surface M in E3
1 is called a canal surface which is formed as

the envelope of a family of pseudo spheres S21 (resp. pseudo hyperbolic spheres
H2

0 or lightlike cones Q2) whose centers lie on a space curve c(s) framed by
{α, β, γ}. Then M can be parametrized by

(2.1) x(s, θ) = c(s) + λ(s, θ)α(s) + µ(s, θ)β(s) + ω(s, θ)γ(s),
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where λ, µ and ω are differential functions of s and θ, ‖x(s, θ)−c(s)‖2 = εr2(s),
(ε = ±1 or 0). The curve c(s) is called the center curve and r(s) is called the
radial function of M.

Explicitly, if M is foliated by pseudo spheres S21 (resp. pseudo hyperbolic
spheres H2

0 or lightlike cones Q2), then ε = 1 (resp. −1 or 0) and M is said to
be of type M+ (resp. M− or M0). Also the canal surface of type M+ can be
divided into three types. In the case that c(s) is spacelike (resp. timelike or
null), it is said to be of type M1

+ (resp. M2
+ or M3

+). Furthermore, M1
+ can

be divided into M11
+ , M12

+ and M13
+ when c(s) is the first kind spacelike curve,

the second kind spacelike curve and the null type spacelike curve, respectively.
Similar to M+, the canal surfaces M− (resp. M0) can be divided into M1

−, M2
−

and M3
− (resp. M1

0, M2
0 and M3

0). Naturally, M1
− (resp. M1

0) can be divided into
M11
− , M12

− and M13
− (resp. M11

0 , M12
0 and M13

0 ).

Remark. In particular, if the center curve c(s) is a straight line, then the Frenet
frame {α, β, γ} of c(s) can be regarded as a trivial orthogonal frame, then the
canal surface is nothing but a surface of revolution. If the radius function is
constant, then M is a tube (pipe) surface.

The linear Weingarten surfaces in the general case is almost completely
open today. Several geometers are studying linear Weingarten surfaces in the
ambient spaces and many interesting results can be found such as [4] and [5].

Definition ([4]). For the Gaussian curvature K and the mean curvature H of
a surface M in E3

1, if M satisfies

(2.2) 2aH + bK = c (a, b, c ∈ R and (a, b, c) 6= (0, 0, 0)),

then it is said to be a linear Weingarten surface.

Remark. The linear Weingarten surfaces can be considered as a natural gener-
alization of surfaces with constant Gaussian curvature or constant mean cur-
vature, when a = 0 or b = 0 in (2.2), respectively. Without loss of generality,
we always assume c = 1 in (2.2).

3. Main results

In this part, we focus on the properties of different types of canal surfaces
formed by the movement of the pseudo spheres S21 along a space curve in E3

1.

3.1. The canal surfaces of type M11
+ and M12

+

At first, we assume M be a canal surface formed by the movement of the
pseudo spheres S21 along a first kind spacelike curve c(s), i.e., M11

+ . According
to the definition of M11

+ , through detailed calculation, we get
λ(s) = −r(s)r′(s),
µ(s, θ) = r(s)

√
1− r′2(s) cosh θ,

ω(s, θ) = r(s)
√

1− r′2(s) sinh θ
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in (2.1). Then M11
+ can be parametrized by

x(s, θ) = c(s) + r(s){−r′(s)α+
√

1− r′2(s) cosh θβ +
√

1− r′2(s) sinh θγ},
where c(s) is parametrized by arc length s. For convenience, we may assume
−r′(s) = cosϕ for some smooth function ϕ = ϕ(s) in above equation. Then
M11

+ can be rewritten by

(3.1) x(s, θ) = c(s) + r(s)(cosϕ(s)α+ sinϕ(s) cosh θβ + sinϕ(s) sinh θγ),

where ϕ ∈ [0, π).
Initially, we have

xs = x1sα+ x2sβ + x3sγ, xθ = r sinϕ sinh θβ + r sinϕ cosh θγ,

where

x1s = sin2 ϕ− rr′′ − rκ sinϕ cosh θ;

x2s = r′ sinϕ cosh θ − rr′κ− rr′ϕ′ cosh θ + rτ sinϕ sinh θ;

x3s = r′ sinϕ sinh θ + rτ sinϕ cosh θ − rr′ϕ′ sinh θ.

Then, the component functions of the first fundamental form are given by

E = 〈xs, xs〉

= r2(κ2 sin2 ϕ cosh2 θ + r′2κ2 + ϕ′2 − τ2 sin2 ϕ+ 2κϕ′ cosh θ

− 2r′κτ sinϕ sinh θ) + sin2 ϕ− 2(rr′′ + rκ sinϕ cosh θ);

F = 〈xs, xθ〉 = −r2r′κ sinϕ sinh θ − r2τ sin2 ϕ;

G = 〈xθ, xθ〉 = −r2 sin2 ϕ.

(3.2)

And EG − F 2 = −r2(rr′′ + rκ sinϕ cosh θ − sin2 ϕ)2. The unit normal vector
field n to M11

+ is given by

(3.3) n =
xs × xθ
‖xs × xθ‖

= cosϕα+ sinϕ cosh θβ + sinϕ sinh θγ,

which point towards M11
+ inside and 〈n, n〉 = 1.

Furthermore, by (3.3) we have

ns = (−r′′ − κ sinϕ cosh θ)α+ (−r′κ− r′ϕ′ cosh θ + τ sinϕ sinh θ)β

+ (τ sinϕ cosh θ − r′ϕ′ sinh θ)γ;

nθ = sinϕ sinh θβ + sinϕ cosh θγ.

Then, the component functions of the second fundamental form are given by

L = −〈xs, ns〉

= −r(κ2 sin2 ϕ cosh2 θ + r′2κ2 + ϕ′2 − τ2 sin2 ϕ+ 2κϕ′ cosh θ

− 2r′κτ sinϕ sinh θ) + (r′′ + κ sinϕ cosh θ);

M = −〈xθ, ns〉 = rr′κ sinϕ sinh θ + rτ sin2 ϕ;

N = −〈xθ, nθ〉 = r sin2 ϕ.

(3.4)
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From (3.2) and (3.4), we have:

Lemma 3.1. The component functions of the first and second fundamental
forms of canal surface M11

+ satisfy

L =
E + P1

−r
, M =

F

−r
, N =

G

−r
and

EG− F 2 = −r2P 2
1 , LN −M2 = −rP1Q1,(3.5)

where P1 = rr′′+rκ sinϕ cosh θ−sin2 ϕ = rQ1−sin2 ϕ, Q1 = r′′+κ sinϕ cosh θ.

Remark. Due to regularity, we see that P1 6= 0 everywhere by (3.5).

From Lemma 3.1, the Gaussian curvature K and the mean curvature H of
M11

+ are given by, respectively

K =
LN −M2

EG− F 2
=

Q1

rP1
,(3.6)

H =
EN − 2FM +GL

2(EG− F 2)
=
−2P1 − sin2 ϕ

2rP1
.(3.7)

Secondly, for the canal surface M12
+ , by the definition of M12

+ and Frenet
equations of second kind spacelike curve, similar to M11

+ , we obtain
λ(s) = −r(s)r′(s),
µ(s, θ) = r(s)

√
1− r′2(s) sinh θ,

ω(s, θ) = r(s)
√

1− r′2(s) cosh θ

in (2.1). Then M12
+ can be parametrized by

x(s, θ) = c(s) + r(s){−r′(s)α+
√

1− r′2(s) sinh θβ +
√

1− r′2(s) cosh θγ},
where c(s) is parametrized by arc length s. We assume −r′(s) = cosϕ for some
smooth function ϕ = ϕ(s), then the canal surface M12

+ can be rewritten by

x(s, θ) = c(s) + r(s)(cosϕ(s)α+ sinϕ(s) sinh θβ + sinϕ(s) cosh θγ),

where ϕ ∈ [0, π).
Do similar calculations to those of M11

+ , we have the following conclusions.

Lemma 3.2. The component functions of the first and second fundamental
forms of canal surface M12

+ satisfy

L =
E + P2

−r
, M =

F

−r
, N =

G

−r
and

EG− F 2 = −r2P 2
2 , LN −M2 = −rP2Q2,(3.8)

where P2 = rr′′−rκ sinϕ sinh θ−sin2 ϕ = rQ2−sin2 ϕ, Q2 = r′′−κ sinϕ sinh θ.
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Remark. Due to regularity, we see that P2 6= 0 everywhere by (3.8).

From Lemma 3.2, the Gaussian curvature K and the mean curvature H of
M12

+ are given by, respectively

K =
LN −M2

EG− F 2
=

Q2

rP2
,(3.9)

H =
EN − 2FM +GL

2(EG− F 2)
=
−2P2 − sin2 ϕ

2rP2
.(3.10)

Based on the Gaussian curvature and mean curvature of M11
+ and M12

+ , it is
not difficult to find the following results.

Proposition 3.3. The Gaussian curvature K and the mean curvature H of
the canal surface M11

+ (M12
+ ) can be related by

H = −1

2
(Kr +

1

r
).

Proof. For M11
+ , from (3.6) and (3.7), we can get the conclusion easily. And for

M12
+ , we can refer to (3.9) and (3.10). �

Next, we study the canal surface M11
+ (M12

+ ) whose Gaussian curvature and
mean curvature satisfy some particular conditions.

Remark. In the following, we just prove the results for M11
+ and omit the proof

for M12
+ since it can be similarly done to those of M11

+ and the results are same.

Theorem 3.4. Let M11
+ (M12

+ ) be a linear Weingarten canal surface. Then it
is an open part of the following surfaces:

(1) a surface of revolution such as

x(s, θ) = (s+ r(s) cosϕ(s), r(s) sinϕ(s) cosh θ, r(s) sinϕ(s) sinh θ),

where r(s) is given by (3.11);
(2) a tube with radius r = −a (a < 0).

Proof. From (2.2) with c = 1 and Proposition 3.3, we obtain

(br − ar2)K = r + a.

By (3.6), we get

(br − ar2)(r′′ + κ sinϕ cosh θ)

r(rr′′ + rκ sinϕ cosh θ − sin2 ϕ)
= r + a,

i.e.,

κ(−r2 − 2ar + b) sinϕ cosh θ + (−r2 − 2ar + b)r′′ + (r + a)(1− r′2) = 0.

Therefore, we get

κ(−r2 − 2ar + b) sinϕ = 0 and (−r2 − 2ar + b)r′′ + (r + a)(1− r′2) = 0.
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Case (1). If −r2 − 2ar + b 6= 0, i.e., a2 + b < 0, then κ = 0. Thus, M11
+ is a

surface of revolution and its radial function satisfies

(−r2 − 2ar + b)r′′ + (r + a)(1− r′2) = 0.

Solving the above equation, we get

(3.11) s = c2 ±
∫ √

r2 + 2ar − b
r2 + 2ar − b− c1

dr,

where 0 < c1 < r2 + 2ar − b, c2 are constants.
Since κ = 0, without loss of generality, we may assume the center curve

c(s) = (s, 0, 0) and α = (1, 0, 0), β = (0, 1, 0), γ = (0, 0, 1), respectively. Then,
by (3.1), M11

+ can be expressed by

x(s, θ) = (s+ r(s) cosϕ(s), r(s) sinϕ(s) cosh θ, r(s) sinϕ(s) sinh θ),

where r(s) satisfy (3.11) and notice −r′ = cosϕ.
Case (2). If κ 6= 0, then −r2 − 2ar + b = 0. Hence, r = −a is a non-zero

constant. M11
+ is a tube and a, b satisfy a2 + b = 0.

Note that M11
+ is a circular cylinder if κ = −r2 − 2ar + b ≡ 0. �

Corollary 3.5. Let M11
+ (M12

+ ) be a canal surface with non-zero constant
Gaussian curvature. Then it is a surface of revolution with negative constant
Gaussian curvature such as

x(s, θ) = (s+ r(s) cosϕ(s), r(s) sinϕ(s) cosh θ, r(s) sinϕ(s) sinh θ),

where r(s) is given by (3.12).

Proof. By Theorem 3.4 with a = 0, when M11
+ has non-zero constant Gaussian

curvature K = 1
b , from a2 +b < 0, then it is nothing but a surface of revolution

with negative constant Gaussian curvature. And it can be expressed by

x(s, θ) = (s+ r(s) cosϕ(s), r(s) sinϕ(s) cosh θ, r(s) sinϕ(s) sinh θ),

where r(s) satisfies

(3.12) s = c2 ±
∫ √

r2 − b
r2 − b− c1

dr (0 < c1 < r2 − b, c2 ∈ R).
�

Corollary 3.6. The canal surface M11
+ (M12

+ ) with non-zero constant mean
curvature does not exist.

Proof. By Theorem 3.4 with b = 0, it must be a surface of revolution. However,
from a2 + b < 0, then a2 < 0, it is a contradiction. �

Theorem 3.7. The canal surfaces M11
+ (M12

+ ) is developable if and only if it
is congruent to a part of a circular cylinder or a circular cone.
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Proof. M11
+ is developable if and only if K ≡ 0. By (3.6), we have Q1 ≡ 0.

From Lemma 3.1, we get

r′′(s) + κ(s) sinϕ(s) cosh θ = 0.

It follows that r′′ = 0 and κ = 0. Then r(s) = c1s + c2, where c1, c2 are
constants and c1 6= ±1 (or else sinϕ = 0, a contradiction). Therefore, M11

+

is a circular cylinder (c1 = 0) or a circular cone (c1 6= 0, c1 6= ±1) in E3
1,

respectively. The converse is obvious. �

Theorem 3.8. The canal surfaces M11
+ (M12

+ ) is minimal if and only if it is a
part of a surface of revolution such as

x(s, θ) = (s+ r(s) cosϕ(s), r(s) sinϕ(s) cosh θ, r(s) sinϕ(s) sinh θ),

where r(s) satisfies (3.13).

Proof. M11
+ is minimal if and only if H ≡ 0. From (3.7), H ≡ 0 implies

−2P1 − sin2 ϕ = 0.

By Lemma 3.1, we get

2rr′′ + 2rκ sinϕ cosh θ − sin2 ϕ = 0.

Therefore, one can obtain rκ sinϕ = 0 and 2rr′′ − sin2 ϕ = 0. Since r 6= 0,
sinϕ 6= 0, then κ = 0 and M11

+ is a surface of revolution. Solving 2rr′′−sin2 ϕ =
0, we get

(3.13) s = c2 ±
∫ √

r

r − c1
dr, (0 < c1 < r, c2 ∈ R).

�

3.2. The canal surfaces of type M2
+

In this section, we concern on the canal surface M2
+. According to the

definition of M2
+, through calculation, we get

λ(s) = r(s)r′(s),

µ(s, θ) = r(s)
√

1 + r′2(s) cos θ,

ω(s, θ) = r(s)
√

1 + r′2(s) sin θ,

in (2.1). Then M2
+ can be parametrized by

(3.14) x(s, θ) = c(s) + r(s){r′(s)α+
√

1 + r′2(s) cos θβ +
√

1 + r′2(s) sin θγ},

where c(s) is parametrized by arc length s. We may assume r′(s) = tanϕ for
some smooth function ϕ = ϕ(s). Then M2

+ can be written as

x(s, θ) = c(s) + r(s)(tanϕ(s)α+ secϕ(s) cos θβ + secϕ(s) sin θγ),

where ϕ ∈ (−π2 ,
π
2 ).

Remark. Do similar calculations to those of M11
+ and M12

+ , for M2
+, we just

state the following results and omit their proofs.
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Lemma 3.9. The component functions of the first and second fundamental
forms of canal surface M2

+ satisfy

L =
E + P3

−r
, M =

F

−r
, N =

G

−r
and

EG− F 2 = −r2P 2
3 , LN −M2 = −rP3Q3,(3.15)

where P3 = rr′′+ rκ secϕ cos θ+ sec2 ϕ = rQ3 + sec2 ϕ, Q3 = r′′+κ secϕ cos θ.

Remark. Due to regularity, we see that P3 6= 0 everywhere by (3.15).

From Lemma 3.9, the Gaussian curvature K and the mean curvature H of
M2

+ are given by, respectively

K =
LN −M2

EG− F 2
=

Q3

rP3
,

H =
EN − 2FM +GL

2(EG− F 2)
=

sec2 ϕ− 2P3

2rP3
.

Proposition 3.10. The Gaussian curvature K and the mean curvature H of
the canal surface M2

+ can be related by

H = −1

2
(
1

r
+Kr).

Theorem 3.11. Let M2
+ be a linear Weingarten canal surface. Then it is an

open part of the following surfaces:

(1) a surface of revolution such as

x(s, θ) = (r(s) secϕ(s) cos θ, r(s) secϕ(s) sin θ, r(s) tanϕ(s) + s),

where r(s) is given by

s = c2 ±
∫ √

r2 + 2ar − b
c1 − r2 − 2ar + b

dr, (c1 > r2 + 2ar − b > 0, c2 ∈ R);

(2) a tube with radius r = −a (a < 0).

Corollary 3.12. Let M2
+ be a canal surface with non-zero constant Gaussian

curvature. Then it is a surface of revolution with negative constant Gaussian
curvature such as

x(s, θ) = (r(s) secϕ(s) cos θ, r(s) secϕ(s) sin θ, r(s) tanϕ(s) + s),

where r(s) is given by

s = c2 ±
∫ √

r2 − b
c1 − r2 + b

dr, (c1 > r2 − b > 0, c2 ∈ R).

Corollary 3.13. The canal surface M2
+ with non-zero constant mean curvature

does not exist.
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Theorem 3.14. The canal surfaces M2
+ is developable if and only if it is

congruent to a part of a circular cylinder or a circular cone.

Theorem 3.15. The canal surfaces M2
+ is minimal if and only if it is a part

of a surface of revolution such as

x(s, θ) = (r(s) secϕ(s) cos θ, r(s) secϕ(s) sin θ, r(s) tanϕ(s) + s),

where r(s) satisfies

s = c2 ±
∫ √

r

c1 − r
dr, (c1 > r > 0, c2 ∈ R).

3.3. The canal surfaces of type M13
+ and M3

+

At first, let M be a canal surface formed by the movement of the pseudo
spheres S21 along a null type spacelike curve c(s), i.e., M13

+ . By the definition
of M13

+ and Frenet equations, we obtain

(3.16)

{
λ(s) = −r(s)r′(s),
2µ(s, θ)ω(s, θ) = r2(s)(1− r′2(s))

in (2.1). Then M13
+ can be parametrized by [8]

x(s, θ) = c(s)− r(s)r′(s)α+ µ(s, θ)β + ω(s, θ)γ,

where c(s) is parametrized by arc length s.
Initially, we have

(3.17) xs = U1(s, θ)α+ V1(s, θ)β +W1(s, θ)γ, xθ = µθβ + ωθγ,

where

U1 = 1− r′2 − rr′′ − ω, V1 = −rr′ + µs + µκ, W1 = ωs − ωκ.

By differentiating (3.16) with respect to s and θ, respectively. We can get

(3.18) µθ = −µωθ
ω
, µs =

rr′(U1 + ω)− µωs
ω

.

Then, the component functions of the first fundamental form are given by

(3.19) E = U2
1 + 2V1W1; F = ωθV1 + µθW1; G = 2µθωθ.

By (3.18) and (3.19), we get

(3.20) EG− F 2 = −r
2ω2

θU
2
1

ω2
.

From (3.17) and (3.20), the unit normal vector field n of M13
+ is given by

(3.21) n =
xs × xθ
‖xs × xθ‖

= −1

r
(−rr′α+ µβ + ωγ),

which point outwards the canal surface M13
+ and 〈n, n〉 = 1.
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Furthermore, by (3.21) we have

ns =
1

r2
{(−rr′2 − rU1 + r)α+ (r′µ− rV1)β + (r′ω − rW1)γ};

nθ = −1

r
(µθβ + ωθγ).

Then, the component functions of the second fundamental form are given by

L = − 1

r2
{(−rr′2 − rU1 + r)U1 + (r′ω − 2rW1)V1 + r′µW1};

M =
ωθ
rω

(rr′U1 − 2µW1);

N =
2µθωθ
r

.

(3.22)

From (3.19) and (3.22), we have:

Lemma 3.16. The component functions of the first and second fundamental
forms of canal surfaces M13

+ satisfy

L =
E − U1

r
, M =

F

r
, N =

G

r

and

EG− F 2 = −r
2ω2

θU
2
1

ω2
, LN −M2 =

ω2
θU1P4

ω2
,(3.23)

where P4 = −U1 − r′2 + 1 = rr′′ + ω.

Remark. Due to regularity, we see that U1 6= 0 everywhere by (3.23).

From Lemma 3.16, the Gaussian curvature K and the mean curvature H of
M13

+ are given by, respectively

K =
LN −M2

EG− F 2
= − P4

r2U1
,(3.24)

H =
EN − 2FM +GL

2(EG− F 2)
=
U1 − P4

2rU1
.(3.25)

Secondly, let M be a canal surface formed by the movement of the pseudo
spheres S21 along a null curve c(s), i.e., M3

+. By the definition of M3
+ and Frenet

equations of null curves, we obtain{
ω(s) = −r(s)r′(s),
µ2(s, θ)− 2λ(s, θ)r(s)r′(s) = r2(s)

in (2.1). Then M3
+ can be parametrized by [8]

(3.26) x(s, θ) = c(s) + λ(s, θ)α+ µ(s, θ)β − r(s)r′(s)γ,

where the center curve c(s) is parametrized by null arc length s.
Do similar calculation to those of M13

+ , we have the following conclusions.
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Lemma 3.17. The component functions of the first and second fundamental
forms of canal surfaces M3

+ satisfy

L =
E −W2

r
, M =

F

r
, N =

G

r
and

EG− F 2 = −r
2λ2θW

2
2

µ2
, LN −M2 =

λ2θW2P5

µ2
,(3.27)

where P5 = µ+ rr′′ = −W2 − r′2.

Remark. Due to regularity, we see that W2 6= 0 everywhere by (3.27).

From Lemma 3.17, the Gaussian curvature K and the mean curvature H of
M3

+ are given by, respectively

K =
LN −M2

EG− F 2
= − P5

r2W2
,(3.28)

H =
EN − 2FM +GL

2(EG− F 2)
=
W2 − P5

2rW2
.(3.29)

Based on the Gaussian curvature and mean curvature of M13
+ and M3

+, it is
easy to get the following results.

Proposition 3.18. The Gaussian curvature K and the mean curvature H of
the canal surface M13

+ (M3
+) can be related by

H =
1

2
(Kr +

1

r
).

Proof. For M13
+ , from (3.24) and (3.25), we can get the conclusion easily. And

for M3
+, we can refer to (3.28) and (3.29). �

Next, we study the canal surface M13
+ (M3

+) whose Gaussian curvature and
mean curvature satisfy some particular conditions.

Remark. In the following, we just prove the results for M13
+ and omit the proof

for M3
+ since it can be similarly done to those of M13

+ and the results are same.

Theorem 3.19. Let M13
+ (M3

+) be a linear Weingarten canal surface. Then it
is a tube with radius r = a (a > 0).

Proof. From (2.2) with c = 1 and Proposition 3.18, we obtain

(br + ar2)K = r − a.
By (3.24), we get

−(br + ar2)(rr′′ + ω)

r2(1− r′2 − rr′′ − ω)
= r − a,

i.e.,

(−r2 + 2ar + b)ω + (−r2 + 2ar + b)rr′′ − (r2 − ar)(r′2 − 1) = 0.
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Therefore, we get

(−r2 + 2ar + b)ω = 0 and (−r2 + 2ar + b)rr′′ − (r2 − ar)(r′2 − 1) = 0.

Assume −r2 + 2ar+ b 6= 0, then ω = 0. By (3.20), M13
+ is degenerate. Thus,

−r2 − 2ar + b = 0. Hence, r = a (a > 0) is a non-zero constant. M13
+ is a tube

and a, b satisfy a2 + b = 0. �

Corollary 3.20. The canal surface M13
+ (M3

+) with non-zero constant Gauss-
ian curvature or non-zero constant mean curvature does not exist.

Proof. If M13
+ has non-zero constant Gaussian curvature or non-zero constant

mean curvature, by (3.24) and (3.25), the functions ω = ω(s) and µ = µ(s),
obviously. It is impossible. The proof is completed. �

Similar to Corollary 3.20, when the Gaussian curvature or mean curvature
equal to zero, by (3.24) and (3.25), the functions ω = ω(s) and µ = µ(s),
obviously. Then we have:

Theorem 3.21. The canal surface M13
+ (M3

+) is non-developable and non-
minimal.

From the calculations as stated in Subsections 3.1, 3.2 and 3.3, we have some
common conclusions as following:

Theorem 3.22. The umbilical canal surface M+ does not exist.

Proof. The canal surfaces M+ is umbilical means

E : F : G = L : M : N,

from Lemma 3.1, Lemma 3.2, Lemma 3.9, Lemma 3.16 and Lemma 3.17, we
obtain P1 = P2 = P3 = U1 = W2 = 0. It is impossible by the regularity of
those canal surfaces. �

Theorem 3.23. The canal surfaces M+ are timelike surfaces in E3
1.

Proof. Because the normal vector of canal surface M+ satisfies 〈n, n〉 = 1, then
it is achieved easily. �

Remark. The conclusions obtained in this paper for the canal surfaces of type
M11

+ , M12
+ and M2

+ are similar to those of canal surfaces in Euclidean 3-space
[2]. However, the results for the canal surfaces of type M13

+ and M3
+ are quite

different due to the causal character of lightlike vector in Minkowski 3-space.

Remark. The canal surfaces obtained by pseudo hyperbolic spheres H2
0 along

a space curve, i.e., M− are discussed in [7]. And the canal surfaces foliated by
lightcones Q2 along a space curve, i.e., M0 are degenerate surfaces by simple
calculation. Here, the proof is omitted.
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4. Example

In this section, we present two examples of canal surface M2
+ and M3

+, the
other types of canal surfaces can be characterized similarly.

Example 4.1. Let c(s) = (sin s
2 , cos s2 ,

√
5
2 s) be a timelike curve. Then its

Frenet frame is 
α(s) = ( 1

2 cos s2 ,−
1
2 sin s

2 ,
√
5
2 ),

β(s) = (− sin s
2 ,− cos s2 , 0),

γ(s) = (
√
5
2 cos s2 ,−

√
5
2 sin s

2 ,
1
2 ).

By (3.14), we have
(1) when the radius function r(s) = s, the canal surface as

x(s, θ) = (sin
s

2
+
s

2
cos

s

2
−
√

2s sin
s

2
cos θ +

√
10

2
s cos

s

2
sin θ,

cos
s

2
− s

2
sin

s

2
−
√

2s cos
s

2
cos θ −

√
10

2
s sin

s

2
sin θ,

√
5s+

√
2

2
s sin θ);

(2) when the radius function r(s) = 1, the tube as

x(s, θ) = (sin
s

2
− sin

s

2
cos θ +

√
5

2
cos

s

2
sin θ,

cos
s

2
− cos

s

2
cos θ −

√
5

2
sin

s

2
sin θ,

√
5

2
s+

1

2
sin θ).

Figure 1. Canal sur-
face M2

+ with r(s) = s.
Figure 2. Tube M2

+

with r(s) = 1.

Example 4.2. Let c(s) = (cos s, sin s, s) be a null curve. Then its Frenet frame
is  α(s) = (− sin s, cos s, 1),

β(s) = (− cos s,− sin s, 0),
γ(s) = (− 1

2 sin s, 12 cos s,− 1
2 ).
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By denoting λ(s, θ) = cosh θ in (3.26), we have
(1) when the radius function r(s) = s, the canal surface as

x(s, θ) = (cos s− cosh θ sin s− cos s
√
s2 + 2s cosh θ +

s

2
sin s,

sin s+ cosh θ cos s− sin s
√
s2 + 2s cosh θ − s

2
cos s, s+ cosh θ +

s

2
);

(2) when the radius function r(s) = 1, the tube as

x(s, θ) = (cos s− cosh θ sin s− cos s, sin s+ cosh θ cos s− sin s, s+ cosh θ).

Figure 3. Canal sur-
face M3

+ with r(s) = s.
Figure 4. Tube M3

+

with r(s) = 1.
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