• Title/Summary/Keyword: mineral synthesis

Search Result 214, Processing Time 0.028 seconds

Strength Characteristics according to the mixed CaO/$SiO_2$ Ratio to Autoclaved Aerated Concrete(AAC) used on the Exterior Panel in Buildings (건물 외벽 패널용 경량기포콘크리트(AAC)의 CaO/$SiO_2$ 혼합비에 따른 강도 특성 평가)

  • Kim, Young-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.3
    • /
    • pp.35-42
    • /
    • 2011
  • The exterior system of buildings, which is the typical curtain wall, has been made with glass and metal. Theses materials, however, have weaknesses such as inadequate insulating quality, short durability, combustibility and toxic substance. On the other hand, Autoclaved Aerated Concrete(AAC) or Autoclaved Lightweight Concrete(ALC) possess the great energy efficiency and the superb insulating quality as substitute of existing exterior system materials. In this research, strength characteristics and bubble dispersion of hydrothermal synthesis process of AAC based on CaO/$SiO_2$(C/S) ratio are analyzed. C/S ratio is determinated and bubble distribution and compressive strength are studied through the test of varied water-to-solid mineral ratio(W/S). In hydrothermal synthesis program, final C/S ratio is determined as 0.7 consider of the manufacturing process and hydrothermal synthesis is done at $180^{\circ}C$ for 7 hours. The analysis shows slurry has about 2,300cP viscosity and 0.56 specific gravity therefore it is expected AAC has the appropriate facility in the manufacturing process and Hydrates of AAC's Expansion.

Synthesis of Low-Thermal-Expansion Cordierite Ceramics Prepared from Pyrophyllite (엽납석을 활용한 저열팽창 코디어라이트 세라믹스 합성)

  • Kim, Dong-Min;Jung, Sook-In;Lee, Hun-Chul;Lee, Sang-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.330-335
    • /
    • 2015
  • A low thermal expansion ceramic, cordierite ($2MgO{\cdot}2Al_2O_3{\cdot}5SiO_2$), was synthesized using pyrophyllite. Pyrophyllite usually consists of $SiO_2$ and $Al_2O_3$, which are the main components of cordierite. $MgCO_3$ and $Al(OH)_3$ were added in various amounts to pyrophyllite and fired for synthesis and sintering. ${\alpha}$-cordierite crystallized from $1000^{\circ}C$ with mixing of 20 wt% $MgCO_3$ and 1.7 wt% $Al(OH)_3$, and un-reacted cristobalite was also detected with the cordierite. As the temperature was increased to $1400^{\circ}C$, the cordierite yield was gradually increased. Powder compacts of the synthesized cordierite were sintered between $1250^{\circ}C{\sim}1400^{\circ}C$; the sintered samples showed a low thermal expansion coefficient of $2.1{\times}10^{-6}/^{\circ}C$ and typical sintering behavior. It is anticipated that it will be possible to synthesize cordierite ceramics on a mass production scale using the mineral pyrophyllite.

Synthesis of Silver Nanoparticles using Pulse Electrolysis in 1-n-butyl-3-methylimidazolium Chloride Ionic Liquid

  • Jeonggeun Jang;Jihee Kim;Churl Kyoung Lee;Kyungjung Kwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2023
  • Ionic liquids are considered as a promising, alternative solvent for the electrochemical synthesis of metals because of their high thermal and chemical stability, relatively high ionic conductivity, and wide electrochemical window. In particular, their wide electrochemical window enables the electrodeposition of metals without any side reaction of electrolytes such as hydrogen evolution. The electrodeposition of silver is conducted in 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl) ionic liquid system with a silver source of AgCl. This study is the first attempt to electrodeposit silver nanoparticles without using co-solvents other than [C4mim]Cl. Pulse electrolysis is employed for the synthesis of silver nanoparticles by varying applied potentials from -3.0 V to -4.5 V (vs. Pt-quasi reference electrode) and pulse duration from 0.1 s to 0.7 s. Accordingly, the silver nanoparticles whose size ranges from 15 nm to ~100 nm are obtained. The successful preparation of silver nanoparticles is demonstrated regardless of the kinds of substrate including aluminum, stainless steel, and carbon paper in the pulse electrolysis. Finally, the antimicrobial property of electrodeposited silver nanoparticles is confirmed by an antimicrobial test using Staphylococcus aureus.

Source-Sink Partitioning of Mineral Nutrients and Photo-assimilates in Tomato Plants Grown under Suboptimal Nutrition

  • Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Yun, Hongbae;Ha, Sangkeun;Ok, Yongsik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.652-658
    • /
    • 2013
  • A huge number of greenhouse soils in Korea have accumulated mineral elements which induce many nutritional and pathological problems. The present study was performed to the effects of the reduced fertilization on plant growth, and uptake and partitioning of minerals (N, P, K) and soluble carbohydrates using highly minerals-accumulated farmer's greenhouse soil. On the basis of the recommended application for tomato crop, the application rates of N, P and K were 110(50%)-5.2(5%)-41.5(35%)kg $ha^{-1}$, respectively, using Hoagland's nutrient solution. Tomato growth rates during the whole experiment were not significant between treatments, but it was found that a decrease in daily growth represented after 60 days of treatment (DAT). The reduced application led to a drastic decrease in the concentration of N, P and K in fruits, and, thus, this resulted in lower uptake after 40 DAT. The lower phloem export and utilization of soluble carbohydrates caused an accumulation of extra-carbohydrates in leaves, stems and fruits in the reduced application. The reduced fertilization induced the capture of N, P and K in leaves and of soluble carbohydrates in stems compared to the conventional application. In this study, we suggest that it is possible to delay the first fertigation time in minerals-accumulated soils without an adverse impact on crop growth, but it is necessary to regularly monitor mineral status in soil to ensure a balanced uptake, synthesis and partitioning of minerals and carbohydrates.

Synthesis of aragonite precipitated calcium carbonate by homogeneous precipitate reaction of $Ca(OH)_2\;and Na_2CO_3$ ($Ca(OH)_2\;및 \;Na_2CO_3$수용액의 균일침전 반응에 의한 아라고나이트 침강성 탄산 칼슘의 합성)

  • Park, Jin-Koo;Park, Hyun-Seo;Ahn, Ji-Whan;Kim, Hwan;Park, Charn-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.110-114
    • /
    • 2004
  • Formation behavior of aragonite precipitated calcium carbonate was investigated with changed the concentration of $Na_2CO_3$ solution and addition method which added in the $Ca(OH)_2$ slurry at $75^{\circ}C$. In this reaction, we found that $Na^+$ ions were substituted into $Ca^{2+}$ion site then disturb the growth of calcite, and while proceed the crystal growth in a certain direction and promote the formation of aragonite. Also, a decrease of reaction rate by control the concentration of $CO_3^{2-}$ ion, induce the homogeneous precipitate reaction and increase substitution ability of $Na^+$ ions, consequently it was promote the formation and growth of aragonite.

Synthesis of Porous TiO2-SiO2 Particles by Self-assembly of Nanoparticles (나노입자들의 자기조립에 의한 TiO2-SiO2 다공체 제조)

  • Oh, Kyoung Joon;Kim, Sun Kyung;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.7 no.3
    • /
    • pp.79-85
    • /
    • 2011
  • Porous $TiO_2-SiO_2$ particles were synthesized by co-assembly of nanoparticles of $TiO_2$ and $SiO_2$ in evaporating aerosol droplets. Poly styrene latex (PSL) particles were employed as a template of porous particles. Flowrate of dispersion gas, weight ratio of $TiO_2/SiO_2$ and $SiO_2$ concentration in the precursor, and PSL size were chosen as process variables. The morphology, crystal structure, chemical bonding, and pore size distribution were analyzed by FE-SEM, XRD, FT-IR, BET. The morphology of porous $TiO_2-SiO_2$ particles was spherical and the average particle size range were from 1 to $10{\mu}m$. The particles were composed of meso and macro pores. The average particle diameter and pore volume of the as prepared particles were dependant on process variables. It was found that UV-Vis absorption of the porous particles was comparable with pure $TiO_2$ nanoparticles even though $TiO_2/SiO_2$ ratio is low in the porous particles.

Pore-Controlled Synthesis of Mesoporous Silica Particles by Spray Pyrolysis from Aqueous Silicic Acid (규산 수용액으로부터 분무열분해법에 의한 기공 특성이 제어된 메조기공의 다공성 실리카 분말 합성)

  • Chang, Han Kwon;Lee, Jin Woo;Oh, Kyoung Joon;Jang, Hee Dong;Kil, Dae Sup;Choi, Jeong Woo
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.89-95
    • /
    • 2012
  • Spherical mesoporous silica particles, of which main pore diameter was 3.8 nm, were successfully prepared by spray pyrolysis from aqueous silicic acid. The effect of precursor concentration, reaction temperature, and the addition of urea and PEG on the particle diameter and pore properties such as pore diameter, total pore volume, and specific surface area were investigated by using FE-SEM, particle size analyzer, and nitrogen absorption-desorption analysis. With an increase of the precursor concentration from 0.2 M to 0.7 M, the average particle diameter, total pore volume, and specific surface area of the porous silica particles increased from 0.56 to $0.96\;{\mu}m$, 0.434 to $0.486\;cm^3/g$, 467.8 to $610.4\;m^2/g$, respectively. Within the temperature range $(600\;^{\circ}C{\sim}800\;^{\circ}C)$, there was no significant difference in the pore diameter, total pore volume, and specific surface area. In addition, the addition of urea as an expansion aid led to slight increases in particle diameter, pore diameter, and specific surface area. However, when the polyethylene glycol (PEG) as an organic template was used, the total pore volume of porous particles increased dramatically.

Synthesis of Fine Copper Powders from CuO-H2O Slurry by Wet-reduction Method (액상환원법에 의한 CuO-H2O 슬러리로부터 미세 구리분말의 제조)

  • Ahn Jong-Gwan;Kim Dong-Jin;Lee Ik-Kyu;Lee Jaeryeung;Huanzhen Liang
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.192-200
    • /
    • 2005
  • Ultrafine copper powder was prepared from $CuO-H_2O$ slurry with hydrazine, a reductant, under $70^{\circ}C$. The influence of various reaction parameters such as temperature, reaction time, molar ratio of $N_2H_4$, PvP and NaOH to Cu in aqueous solution had been studied on the morphology and powder phase of Cu powders obtained. The production ratio of Cu from CuO was increased with the ratio of $N_2H_4/Cu$ and the temperature. When the ratio of $N_2H_4/Cu$ was higher than 2.5 and the temperature was higher than $60^{\circ}C$, CuO was completely reduced into Cu within 40 min. The crystalline size of Cu obtained became fine as the temperature increase, whereas the aggregation degree of particles was increased with the reaction time. The morphology of Cu powder depended on that of the precursor of CuO and processing conditions. The average particle size was about $0.5{\mu}m$.

Vapor phase synthesis of silicon nitride powder using DC plasma torch (DC 플라즈마 토치를 이용한 질화규소 분말의 기상합성)

  • Hwang, Y.;Sohn, Y.U.;Chung, H.S.;Choi, S.K.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.4
    • /
    • pp.370-377
    • /
    • 1994
  • DC plasma torch which is a non-transferred type was constructed and silicon nitride powders were produced. Ar gas is used as a plasma gas and gas reactants with the carrier gas are introduced beneath the plasma ignition part. Two slits are attached and a reactive quenching gas is introduced through them. Using $SiCl_4 and NH_3$ as starting materials, silicon nitride powders were produced. As-produced powders were amorphous and crystalline silicon nitrides were obtained by heating at $1420^{\circ}C$ for two hours under nitrogen atmosphere. Silicon nitride phase was identified in the XRD patterns and IR spectrum, and the image of the powders before and after heating was observed from the TEM analysis.

  • PDF

Synthesis of C3S, C2S, C3A Powders using Ultra-fine Calcium Oxide Powder Synthesized from Eggshell and Effect of C3A Content on Hardened Mixed Aggregates (난각으로부터 합성된 초미립 CaO 분말을 이용한 C3S, C2S, C3A 분말 합성 및 혼합 경화체에 미치는 C3A 함량의 영향)

  • Kong, Heon;Kwon, Ki-Beom;Park, Sang-Jin;Noh, Whyo-Sub;Lee, Sang-Jin
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.493-501
    • /
    • 2019
  • In this work, ultra-fine calcium oxide (CaO) powder derived from eggshells is used as the starting material to synthesize mineral trioxide aggregate (MTA). The prepared CaO powder is confirmed to have an average particle size of 500 nm. MTAs are synthesized with three types of fine CaO-based powders, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). The synthesis behavior of C3S, C2S and C3A with ultra-fine CaO powder and the effects of C3A content and curing time on the properties of MTA are investigated. The characteristics of the synthesized MTA powders are examined by X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), and a universal testing machine (UTM). The microstructure and compressive strength characteristics of the synthesized MTA powders are strongly dependent on the C3A wt.% and curing time. Furthermore, MTA with 5 wt.% C3A is found to increase the compressive strength and shorten the curing time.