Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.6.493

Synthesis of C3S, C2S, C3A Powders using Ultra-fine Calcium Oxide Powder Synthesized from Eggshell and Effect of C3A Content on Hardened Mixed Aggregates  

Kong, Heon (The Research Institute of Ceramic Industry Technology in Mokpo National University)
Kwon, Ki-Beom (Research Center, Dreamsojae Co., Ltd)
Park, Sang-Jin (Research Center, Dreamsojae Co., Ltd)
Noh, Whyo-Sub (Research Center, Dreamsojae Co., Ltd)
Lee, Sang-Jin (The Research Institute of Ceramic Industry Technology in Mokpo National University)
Publication Information
Journal of Powder Materials / v.26, no.6, 2019 , pp. 493-501 More about this Journal
Abstract
In this work, ultra-fine calcium oxide (CaO) powder derived from eggshells is used as the starting material to synthesize mineral trioxide aggregate (MTA). The prepared CaO powder is confirmed to have an average particle size of 500 nm. MTAs are synthesized with three types of fine CaO-based powders, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). The synthesis behavior of C3S, C2S and C3A with ultra-fine CaO powder and the effects of C3A content and curing time on the properties of MTA are investigated. The characteristics of the synthesized MTA powders are examined by X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), and a universal testing machine (UTM). The microstructure and compressive strength characteristics of the synthesized MTA powders are strongly dependent on the C3A wt.% and curing time. Furthermore, MTA with 5 wt.% C3A is found to increase the compressive strength and shorten the curing time.
Keywords
Calcium oxide powder; Tricalcium silicate (C3S); Dicalcium silicate (C2S); Tricalcium aluminate (C3A); Mineral trioxide aggregate (MTA);
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Torabinejad and M. Parirokh: J. Endod., 36 (2010) 190.   DOI
2 Y. H. Song, N. Y. Lee, S. H. Lee and M. K. Jih: J. Korean Acad. Pediatr. Dent., 45 (2018) 344.
3 M. Torabinejad, C. U. Hong, S. J. Lee, M. Monsef and T. R. Pitt Ford: J. Endod., 21 (1995) 603.   DOI
4 G. Bogen and S. Kuttler: J. Endod., 35 (2009) 777.   DOI
5 M. A. H. Duarte, M. A. Marciano, R. R. Vivan, M. T. Filho, J. M. G. Tanomaru and J. Camilleri: Braz. Oral Res., 32 (2018) 111.
6 Y. B. Cho: Kor. J. Dent. Mater., 42 (2015) 51.   DOI
7 H. J. Moon, J. H. Lee, J. H. Kim, J. C. Knowles, Y. B. Cho, D. H. Shin, H. H. Lee and H. W. Kim: J. Tissue Eng., 9 (2018) 1.
8 M. Parirokh and M. Torabinejad: J. Endod., 36 (2010) 16.   DOI
9 J. Lim, J.-G. Guk, B. Singh, Y.-C. Hwang, S.-J. Song and H.-S. Kim: J. of the Kor. Ceram. Soc., 56 (2019) 403.   DOI
10 L. Habte, N. Shiferaw, D. Mulatu, T. Thenepalli, R. Chilakala and J. W. Ahn: Sustainability, 11 (2019) 3196.   DOI
11 S. Lin, T. Kiga, Y. Wang and K. Nakayama: Energy Procedia, 4 (2011) 356.   DOI
12 R. S. Putra, A. Liyanita, N. Arifah, E. Puspitasari, Sawaludin and M. N. Hizam: Energy Procedia, 105 (2017) 289.   DOI
13 H. Ogura, T. Yamamoto, H. Kage, Y. Matsuno and A. S. Mujumdar: Chem. Eng. J., 86 (2002) 3.   DOI
14 I. Fujii, K. Tsuchiya, M. Higano and J. Yamada: J. Sol., 34 (1985) 367.
15 J. Havlica and S. Sahu: Cement Concrete Res., 22 (1992) 671.   DOI
16 D. J. Kim, J. H. Cho, E. J. Gwak, W. S. Park, B. Y. Jung, K. D. Kim and N. S. Pang: J. Korean Academy of Advanced General Dentistry, 5 (2016) 67.