DOI QR코드

DOI QR Code

Synthesis of C3S, C2S, C3A Powders using Ultra-fine Calcium Oxide Powder Synthesized from Eggshell and Effect of C3A Content on Hardened Mixed Aggregates

난각으로부터 합성된 초미립 CaO 분말을 이용한 C3S, C2S, C3A 분말 합성 및 혼합 경화체에 미치는 C3A 함량의 영향

  • Kong, Heon (The Research Institute of Ceramic Industry Technology in Mokpo National University) ;
  • Kwon, Ki-Beom (Research Center, Dreamsojae Co., Ltd) ;
  • Park, Sang-Jin (Research Center, Dreamsojae Co., Ltd) ;
  • Noh, Whyo-Sub (Research Center, Dreamsojae Co., Ltd) ;
  • Lee, Sang-Jin (The Research Institute of Ceramic Industry Technology in Mokpo National University)
  • 공헌 (국립목포대학교 세라믹산업기술연구소) ;
  • 권기범 (드림소재(주)) ;
  • 박상진 (드림소재(주)) ;
  • 노효섭 (드림소재(주)) ;
  • 이상진 (국립목포대학교 세라믹산업기술연구소)
  • Received : 2019.11.03
  • Accepted : 2019.12.19
  • Published : 2019.12.28

Abstract

In this work, ultra-fine calcium oxide (CaO) powder derived from eggshells is used as the starting material to synthesize mineral trioxide aggregate (MTA). The prepared CaO powder is confirmed to have an average particle size of 500 nm. MTAs are synthesized with three types of fine CaO-based powders, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). The synthesis behavior of C3S, C2S and C3A with ultra-fine CaO powder and the effects of C3A content and curing time on the properties of MTA are investigated. The characteristics of the synthesized MTA powders are examined by X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), and a universal testing machine (UTM). The microstructure and compressive strength characteristics of the synthesized MTA powders are strongly dependent on the C3A wt.% and curing time. Furthermore, MTA with 5 wt.% C3A is found to increase the compressive strength and shorten the curing time.

Keywords

References

  1. M. Torabinejad and M. Parirokh: J. Endod., 36 (2010) 190. https://doi.org/10.1016/j.joen.2009.09.010
  2. Y. H. Song, N. Y. Lee, S. H. Lee and M. K. Jih: J. Korean Acad. Pediatr. Dent., 45 (2018) 344.
  3. M. Torabinejad, C. U. Hong, S. J. Lee, M. Monsef and T. R. Pitt Ford: J. Endod., 21 (1995) 603. https://doi.org/10.1016/S0099-2399(06)81112-X
  4. G. Bogen and S. Kuttler: J. Endod., 35 (2009) 777. https://doi.org/10.1016/j.joen.2009.03.006
  5. M. A. H. Duarte, M. A. Marciano, R. R. Vivan, M. T. Filho, J. M. G. Tanomaru and J. Camilleri: Braz. Oral Res., 32 (2018) 111.
  6. Y. B. Cho: Kor. J. Dent. Mater., 42 (2015) 51. https://doi.org/10.14815/kjdm.2015.42.1.51
  7. H. J. Moon, J. H. Lee, J. H. Kim, J. C. Knowles, Y. B. Cho, D. H. Shin, H. H. Lee and H. W. Kim: J. Tissue Eng., 9 (2018) 1.
  8. D. J. Kim, J. H. Cho, E. J. Gwak, W. S. Park, B. Y. Jung, K. D. Kim and N. S. Pang: J. Korean Academy of Advanced General Dentistry, 5 (2016) 67.
  9. M. Parirokh and M. Torabinejad: J. Endod., 36 (2010) 16. https://doi.org/10.1016/j.joen.2009.09.006
  10. J. Lim, J.-G. Guk, B. Singh, Y.-C. Hwang, S.-J. Song and H.-S. Kim: J. of the Kor. Ceram. Soc., 56 (2019) 403. https://doi.org/10.4191/kcers.2019.56.4.09
  11. L. Habte, N. Shiferaw, D. Mulatu, T. Thenepalli, R. Chilakala and J. W. Ahn: Sustainability, 11 (2019) 3196. https://doi.org/10.3390/su11113196
  12. S. Lin, T. Kiga, Y. Wang and K. Nakayama: Energy Procedia, 4 (2011) 356. https://doi.org/10.1016/j.egypro.2011.01.062
  13. R. S. Putra, A. Liyanita, N. Arifah, E. Puspitasari, Sawaludin and M. N. Hizam: Energy Procedia, 105 (2017) 289. https://doi.org/10.1016/j.egypro.2017.03.316
  14. H. Ogura, T. Yamamoto, H. Kage, Y. Matsuno and A. S. Mujumdar: Chem. Eng. J., 86 (2002) 3. https://doi.org/10.1016/S1385-8947(01)00265-0
  15. I. Fujii, K. Tsuchiya, M. Higano and J. Yamada: J. Sol., 34 (1985) 367.
  16. J. Havlica and S. Sahu: Cement Concrete Res., 22 (1992) 671. https://doi.org/10.1016/0008-8846(92)90019-R