• Title/Summary/Keyword: mineral bioavailability

Search Result 45, Processing Time 0.025 seconds

Effect of Dietary Fiber on Mineral Bioavailability (식이섬유가 무기질의 생체이용에 미치는 영향)

  • Choe, Myeon
    • Journal of Food Hygiene and Safety
    • /
    • v.7 no.4
    • /
    • pp.165-172
    • /
    • 1992
  • Among the nutrients of biological importance, minerals are of particular interest in human nutrition because the range of adequate intake is so narrow. As the results of a series of interaction experiments between dietary fiber sources and minerals, there are many inconsistencies in the experimental data regarding the effect of dietary fibers on mineral bioavailability. the mechanism by which dietary fiber might influence mineral absorption is related to its physicochemical properties. These properties involve the ability of dietary fiber to (1) act as a weak cation exchanger, (2) decrease transit time, (3) dilute mineral concentration by increasing fecal bulk and (4) resist digestion in the large bowel. Regardless of the large number of human and animal studies available, a carful review of these publications dose not provide the answer as to whether the adverse effect of dietary fibers on mineral absorption is the fiber itself or some associated dietary factors( e.g. phytate, oxalate, ascorbate, citrate and protein, mineral-mineral interaction, etc) that are responsible for this action. As a result of the complexity of interaction that may take place between minerals. dietary fiber, and other component of food ; it becomes very difficult to blame fiber alone as a negative factor of mineral nutrition. We absolutely need more research with advanced tools rather than metabolic balance study.

  • PDF

Trace Mineral Nutrition in Poultry and Swine

  • Richards, James D.;Zhao, Junmei;Harrell, Robert J.;Atwell, Cindy A.;Dibner, Julia J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1527-1534
    • /
    • 2010
  • Trace minerals such as zinc, copper, and manganese are essential cofactors for hundreds of cellular enzymes and transcription factors in all animal species, and thus participate in a wide variety of biochemical processes. Immune development and response, tissue and bone development and integrity, protection against oxidative stress, and cellular growth and division are just a few examples. Deficiencies in trace minerals can lead to deficits in any of these processes, as well as reductions in growth performance. As such, most animal diets are supplemented with inorganic and/or organic forms of trace minerals. Inorganic trace minerals (ITM) such as sulfates and oxides form the bulk of trace mineral supplementation, but these forms of minerals are well known to be prone to dietary antagonisms. Feeding high-quality chelated trace minerals or other classes of organic trace minerals (OTM) can provide the animal with more bioavailable forms of the minerals. Interestingly, many, if not most, published experiments show little or no difference in the bioavailability of OTMs versus ITMs. In some cases, it appears that there truly is no difference. However, real differences in bioavailability can be masked if source comparisons are not made on the linear portion of the dose-response curve. When highly bioavailable chelated minerals are fed, they will better supply the biochemical systems of the cells of the animal, leading to a wide variety of benefits in both poultry and swine. Indeed, the use of certain chelated trace minerals has been shown to enhance mineral uptake, and improve the immune response, oxidative stress management, and tissue and bone development and strength. Furthermore, the higher bioavailability of these trace minerals allows the producer to achieve similar or improved performance, at reduced levels of trace mineral inclusion.

Dairy Dietary Calcium and Osteoporosis - An Overview

  • Jayaprakasha, H.M.;Yoon, Y.C.
    • Journal of Dairy Science and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • The osteoporosis is a disease characterized by lower bone mineral content, deterioration of bone tissue and a reduction in the protein and mineral matrix of the bone. The bone becomes more porous leading to increased bone fragility and risk of fracture, particularly of the hip, spine and wrist. Osteoporosis can result in disfigurement, lowered self·esteem, reduction or loss of mobility, and decreased independence. Adequate calcium intake through milk and milk products in childhood and adolescence is a decisive marker for obtaining a maximum bone mass (peak adult bone mass) and f3r the prevention of osteoporosis. Calcium is one of the most critical nutrients associated with the osteoporosis. Dietary calcium is of great significance for healthy skeletal growth and development. The bone mineral content and bone mineral density of young adults is directly related to the calcium intake through milk and dairy products. Milk and milk products are the important sources of calcium as the richness and bioavailability of this nutrient is very high as compared to other food products. If enough calcium is not supplemented through diet, calcium from the bone will be depleted to maintain the blood plasma calcium level. The article focuses on the various issues related to osteoporosis manifestation and the role of dietary calcium especially calcium derived from dairy products.

  • PDF

Bioavailability of Phosphorus in Two Cultivars of Pea for Broiler Chicks

  • Woyengo, T.A.;Emiola, I.A.;Kim, I.H.;Nyachoti, C.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.396-403
    • /
    • 2016
  • The aim was to determine the relative bioavailability of phosphorus (P) in peas for 21-day old broiler chickens using slope-ratio assay. One hundred and sixty eight male Ross 308 broiler chicks were divided into 42 groups 4 balanced for body weight and fed 7 diets in a completely randomized design (6 groups/diet) from day 1 to 21 of age. The diets were a corn-soybean meal basal diet, and the corn-soybean meal basal diet to which monosodium phosphate, brown- or yellow-seeded pea was added at the expense of cornstarch to supply 0.5% or 1% total phosphorus. Monosodium phosphate was included as a reference, and hence the estimated bioavailability of P in pea cultivars was relative to that in the monosodium phosphate. Birds and feed were weighed weekly and on d 21 they were killed to obtain tibia. The brown-seeded pea contained 23.4% crude protein, 0.47% P, whereas the yellow-seeded pea contained 24.3% crude protein and 0.38% P. Increasing dietary P supply improved (p<0.05) chick body weight gain and tibia ash and bone density. The estimated relative bioavailability of p values for brown- and yellow-seeded peas obtained using final body weight, average daily gain, tibia ash, and bone mineral density were 31.5% and 36.2%, 35.6% and 37.3%, 23.0% and 5.60%, and 40.3% and 30.3%, respectively. The estimated relative bioavailability of p values for brown- and yellow-seeded peas did not differ within each of the response criteria measured in this study. In conclusion, the relative bioavailability of P in pea did not differ depending on the cultivar (brown- vs yellow-seed). However, the relative bioavailability of P in pea may vary depending on the response criterion used to measure the bioavailability.

A Comparative Study of Dietary Mineral Intake Status and Serum Mineral Concentrations of Postmenopausal Vegetarian Women with those of the Omnivores (채식과 일반식 폐경 후 여성의 무기질 섭취량과 혈청 내 농도 비교)

  • Kim Mi-Hyun;Sung Chung-Ja
    • Journal of Nutrition and Health
    • /
    • v.38 no.2
    • /
    • pp.151-160
    • /
    • 2005
  • The purpose of this study was to compare the mineral status of postmenopausal vegetarian women with those of the omnivores, and to investigate the relationship between dietary pattern and minerals status in postmenopausal Korean women. The research group was composed of vegetarian women (n = 38), all of them were seven day adventists, who had been on vegetarian diet over 20 yrs. Their anthropometric measurements, dietary intakes, and blood mineral concentrations were compared to age matched omnivores controls (n = 38). The average age of vegetarians and omnivores were 60.7 yrs and 60.5 yrs, respectively and there was no significant difference. The mean daily energy intake of vegetarians and omnivores were 1518.5 kcal and 1355.5 kcal, respectively and their was no significant difference. The mean calcium intake of vegetarians (492.6 mg) was not significantly different from that of omnivores (436.6 mg). The vegetarians consumed significantly greater quantities of magnesium (p < 0.001), iron (p < 0.001), copper (p < 0.001), manganese (p < 0.001) and dietary fiber (p < 0.05). There were no significantly differences in serum calcium, magnesium and manganese levels between vegetarians and omnivores. However, serum levels of phosphorus (p < 0.01), iron (p < 0.05), ferritin (p < 0.01), zinc (p < 0.001) and copper (p < 0.05) were significantly lower than those of omnivores. In conclusion, vegetarian postmenopausal women may have low bioavailability of iron, zinc and copper. Therefore it was needed that further study on mineral bioavailability of vegetarian diet. (Korean J Nutrition 38(2): 151~160, 2005)

Effect of Calcium and Iron Loading on Bioavailability of Minerals in Normal and Ca/Fe-deficient Rats (칼슘과 철의 과다섭가 성장기 흰쥐의 체내 무기질 이용성에 미치는 영향)

  • 이연숙
    • Journal of Nutrition and Health
    • /
    • v.32 no.3
    • /
    • pp.248-258
    • /
    • 1999
  • This study examined the effect of excess loading of calcium (Ca)and iron(Fe) on the bioavailability of minerals in both normal and Ca-and Fe-deficient rats. Three-week-old male rats were divided into four groups and fed experimental diets for six weeks, containing either normal (0.5%) or high(1.5%) Ca and normal (35ppm) or high (350ppm)Fe. Likewise, three-week-old male rats were first fed a Ca-and Fe-deficient diet for three weeks, and then fed one of four experimental diets for additional three weeks. In both normal and Ca-and Fe-deficient rats, ca contents of serum, liver, kidney and femur were not significantly affected by dietary Ca and Fe levels. Apparent Ca absorption(%) decreased in rats fed a high Ca diet regardless of dietary Fe levels. Magnesium(Mg) contents of serum, liver and femur significantly decreased in rats fed a high Ca diet. Fe contents of serum and liver significantly increased in rats fed a high-Fe diet, but decreased in rats fed a high Ca diet. Fe content of serum and liver significantly increased in rate fed a high-Fe diet, decreased in rats fed a high-Ca diet. Apparent Fe absorption increased in rats fed a high-Fe diet, and decreased in rats fed a high-Ca diet in Ca-and Fe-deficient rats, but dietary Ca did not seem to affect Fe absorption in normal rats. Phosphorus(P) contents of serum and femur were not significantly affected by dietary Ca and Fe levels in both normal and Ca-and Fe-deficient rats. Serum copper(Cu) decreased in rats fed a high-Fe diet, while serum zinc(Zn) decreased in rats fed a high-Ca diet in normal rats. Cu contents of liver, and Zn contents of serum and liver decreased in rats fed a high-Fe diet in Ca-and Fe-deficient rats. There results suggest that a dietary overload of Ca and Fe in both normal and Ca-and Fe-deficient rats may decrease mineral bioavailability leading to potential health problems.

  • PDF

Nano-Calcium Ameliorates Ovariectomy-Induced Bone Loss in Female Rats

  • Choi, Hyeon-Son;Han, JeungHi;Chung, Seungsik;Hong, Yang Hee;Suh, Hyung Joo
    • Food Science of Animal Resources
    • /
    • v.33 no.4
    • /
    • pp.515-521
    • /
    • 2013
  • In this study, we examined the effects of organic types of calcium derived from oyster shell (OS-Ca) and nano-calcium (Nano-Ca) on the bio-availability and physiological responses associated with bone health in ovariectomised rats. Increased body weight, which is one of the physiological effects of ovary removal, was significantly recovered by Nano-Ca treatment (p<0.05). The reduced calcium level in the liver in ovariectomised rat was increased significantly with OS-Ca and Nano-Ca treatment (p<0.05), suggesting improved calcium bio-availability. Alkaline phosphatase (ALP), osteocalcin, and deoxypyridinoline (DPD) were analysed as biochemical markers of bone metabolism and health in the presence or absence of OSCa and Nano-Ca. ALP, osteocalcin, and DPD levels increased following ovary removal and tended to decrease after treatment with Nano-Ca, indicating that Nano-Ca induces favourable bone metabolism. This result was reflected in the recovery of bone mineral density (BMD) and bone mineral content (BMC) of the femur after Nano-Ca treatment following ovary removal. Taken together, our data show that the tested calcium treatments, especially using Nano-Ca, enhanced the bioavailability or absorption of calcium and positively affected bone metabolism in ovariectomised rats.

Mineral bioavailability and physicochemical properties of muffins prepared with enzyme-treated whole wheat flour (효소처리 통밀가루를 첨가한 머핀의 미네랄 생체이용율 및 품질 특성)

  • Lee, Sin Young;Lee, Kwang Yeon;Lee, Hyeon Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.4
    • /
    • pp.422-430
    • /
    • 2022
  • The effects of phytase and cellulase treatment on the bioavailability of iron, calcium, and zinc in whole wheat flour and their food applications were evaluated in this study. Whole wheat flour was treated with phytase and cellulase either individually or in combination and incubated at 50℃ for 2 h; the concentrations used for the individual enzymes were 2%, 10%, and 20%. The concentration of the combination enzyme was 20% with a mixing ratio of 5:5. Total dietary fiber and phytate contents were reduced as the concentrations of phytase and cellulase increased. The bioavailability of iron, calcium, and zinc was notably improved after in vitro digestion in 20% cellulase, combination enzyme, and 20% phytase, respectively. Muffins made with cellulase- and phytase-treated whole wheat flour showed improved quality and bioavailability of minerals. Phytase- and cellulase-treated whole wheat flour may be useful for development of functional food products with improved bioavailability of minerals.

Standardization Studies for the Oriental Mineral Medicine (광물성 약재(광물약)의 표준화에 관한 연구)

  • Kim, Seon-Ok;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.48 no.3
    • /
    • pp.187-197
    • /
    • 2015
  • Oriental mineral medicines are single or mixture of more than one mineral species or rock/fossil which are used to treat disease. Mineral medicines remove harmful or useless substances to decrease toxicity and secondary effects, and cause the manufacture of medical compounds with increased efficacy. The extraction test is an accepted in vitro system to predict the bioaccessibility of major and minor elements from mineral medicine. It incorporates gastrointerstinal tract parameters representative of a human body that including stomach and small intestinal pH which are the same as digestion condition. The bioaccessibility of a mineral medicine is the fraction that is soluble in the gastrointestinal environment and is available for absorption. Reaction path modeling in the human body can predict digestion with gastric fluid as well as absorption in the small intestine, existence in body fluids and reaction progress of the exhaust process according to pH conditions in body. Also reaction path modeling can predict bioavailability, which is equal to existence rate in the body and the form and amount of a medicine in the body after intake. The study results from predicating the existence form mineral medicines in the body, and proving the effective ingredient using bioaccessibitily and human risk assessment, suggest these that should be necessary data for new medicine development.