• Title/Summary/Keyword: milling degree

Search Result 133, Processing Time 0.027 seconds

The Effect of Milling Time and Speed on the Particle Size of Ibuprofen in the Cryogenic Ball Milling Process (극저온 볼 밀링 공정시 밀링시간 및 속도가 Ibuprofen분말의 입자 크기에 미치는 영향)

  • Cho Hyun Kab;Paik Young Nam;Rhee Kyong Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1022-1027
    • /
    • 2005
  • In this study, ball milling process was applied to reduce the particle size of bio-material down to submicron size. The material used was Ibuprofen. The ball milling was performed at low temperature of about $-180^{\circ}C$. The effect of processing conditions (milling time, milling speed) on the particle size was determined. The results showed that the degree of crystallite of Ibuprofen was slightly reduced by the ball milling process. The results also showed that the size of Ibuprofen was significantly reduced by the ball milling process. The effect of milling time was significant within the milling time of six hours while it was small thereafter.

Functional Components of Different Varieties of Barley Powder with Varying Degrees of Milling (품종과 도정도에 따른 보릿가루의 기능성분 함량)

  • Kim, Eun Hee;Lee, Yoon Jeong;Jang, Gwi Yeong;Kim, Min Young;Yoon, Nara;Ji, Yeong Mi;Lee, Mi Ja;Lee, Junsoo;Jeong, Heon Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.256-261
    • /
    • 2016
  • This study investigated the changes in functional components of barley powder produced from different grain varieties (Dahan, Hinchalssalbori, Heukgwang, Huknuri and Boseokchal) and varying milling degrees (27, 23, 19, and 15%). Total polyphenol contents increased with a decrease in the milling degree, with content ranges of 0.97-1.40, 1.19-1.66, 1.22-1.77, 1.30-1.93, and 1.46-2.12 mg/g, respectively. Total flavonoids content also increased with a decrease in the milling degree. The total polyphenol and flavonoids contents were the highest in barley powder from Huknuri and Boseokchal grains. Total dietary fiber, arabinoxylan, and GABA contents increased with a decrease in the milling degree. As the milling degrees decreased, ${\beta}$-glucan contents, which was the highest in Hinchalssalbori and Boseokchal, decreased with ranges of 4.98-7.29, 5.26-7.03, 4.84-7.17, 4.84-700, and 4.66-6.33 mg/100 g, respectively. These results provide useful data for selection of an appropriate variety and milling degree to achieve a high quality in barley processing.

Physicochemical Characteristics of Barley Powder Produced from Different Cultivars and with Different Degrees of Milling (품종 및 도정도별 보릿가루의 이화학적 특성)

  • Kim, Eun Hee;Lee, Yoon Jeong;Lee, Sang Hoon;Jang, Gwi Yeong;Kim, Min Young;Yoon, Nara;Lee, Mi Ja;Lee, Junsoo;Jeong, Heon Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.639-644
    • /
    • 2015
  • This study investigated changes in physicochemical characteristics of barely powder produced from different cultivars (Dahan, Hinchalssal, Heugkwang, Heugnurl and Boseokchal) and with different degrees (15, 19, 23, and 27%) of milling. Crude protein content increased with decreasing milling degrees, with content ranges of 7.38-10.09, 8.01-10.58, 9.47-11.62, and 9.03-12.08%, respectively. Further crude lipid and ash content increased with decreasing milling degree. The crude lipid content was highest in Dahan-milled barley, while crude ash content was highest in Hinchalssal-milled barley. As the milling degree decreased, palmitic and stearic acid composition decreased and oleic and linoleic acid composition increased. Major minerals present in the barley powder were Ca, Fe, K, Mg, Mn, Na, and Zn. K and Mg content increased with decreasing milling degree. These results indicate that further studies are needed to optimize the cultivar usage and degree of milling for manufacture of various barley products.

Investigation of Heavy Metal Contents by Milling Degrees of Rice (쌀의 도정도에 따른 중금속 함량 변화)

  • Kim, Jin-Kug;Lee, Ji-Hwan;Kim, Ji-Eun;Bae, In-Ae;Kim, Kwang-Seon;Lee, Eun-Suk;Kwon, Soon-Duck;Park, Ju-Hwan;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.303-308
    • /
    • 2015
  • BACKGROUND: Recently, various rice by milling degree is sold for health and taste. To provide safe food to consumers, it is need to know the change of heavy metal contents according to milling degree of rice.METHODS AND RESULTS: This study was to investigate residual the levels of cadmium (Cd), lead (Pb), copper (Cu) and zinc (Zn) as stated in the milling degree of the rice contaminated Cd and Pb from 2011 to 2012 in Chungcheongnam-do. Rice samples exceeded the maximum residue limits (MRL) of Cd and Pb were milled by five degrees (0.0, 2.45, 8.02, 10.48, 15.09%). Milled rice was digested by microwave method, and analyzed heavy metal contents using ICP-OES. Recovery ratios of 4 heavy metals such as Cd, Pb, Cu and Zn were ranged for 79.7-98.9%, and limits of detection (LOD) and limits of quantitation (LOQ) were fulfilled with the normal analytical standards. Concentrations of Cd, Pb, Cu and Zn were ranged 0.416-0.433 mg/kg, 0.183-0.26 mg/kg, 3.639- 3.882 mg/kg and 16.868-19.801 mg/kg, respectively.CONCLUSION: From these results, conforming with increase of milling degree of rice, Cd, Pb, Cu, and Zn contents tended to decrease. The contents of heavy metals were decreased 3.1% in Cd, 29.3% in Pb, 6.4% in Cu and 15.1% in Zn, in according to the highest milling degree of 15.09%.

Effect of Degree of Particle Agglomeration on the Dielectric Properties of BaTiO3/Epoxy Composites (분말 응집도가 BaTiO3/에폭시 복합체의 유전특성에 미치는 영향)

  • Han, Jeong-Woo;Kim, Byung-Kook;Je, Hae-June
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.542-546
    • /
    • 2008
  • $BaTiO_3$/epoxy composites can be applied as the dielectric materials for embedded capacitors. The effects of the degree of $BaTiO_3$ particle agglomeration on the dielectric properties of $BaTiO_3$/epoxy composites were investigated in the present study. The degree of particle agglomeration was controlled by the milling of the agglomerated particles. The size and content of the agglomerated $BaTiO_3$ particles decreased with an increase in the milling time. The dielectric constants and polarizations of $BaTiO_3$/epoxy composites abruptly decreased with the increase of the milling time. It was concluded that the dielectric constants and polarizations of $BaTiO_3$/epoxy composites decreased as the degree of particle agglomeration decreased. The degree of agglomeration of $BaTiO_3$ particles turned out to be a very influential factor on the dielectric properties of $BaTiO_3$/epoxy composites.

Nanocrystallization of Ibuprofen by Cryogenic Ball Milling II (극저온 볼 밀링을 통한 Ibuprofen 분말의 나노화II)

  • 조현갑;이경엽;백영남;박훈재;이상목
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.442-446
    • /
    • 2004
  • Reducing the particle size of drug materials down to submicron is an important matter in pharmaceutical industry. Cryogenic milling technology is one of the mechanical milling processes, which is mostly utilized in refining grain size of metal and ceramics at extremely low temperature environment. This technique has not been readily studied in application to medical and biotechnology. This paper, therefore, describes the application of cryogenic milling process to reduce particle size of Ibuprofen. The shape and size of the Ibuprofen particle before and after the cryogenic ball milling process were analyzed. XRD analysis was performed to examine a change in crystallinity of Ibuprofen by the cryogenic ball milling process. The results showed that the size of Ibuprofen particles was reduced to 1/10 or less of its initial size. The results also showed that the degree of crystallinity of Ibuprofen was slightly reduced after cryogenic ball milling with nitrogen

  • PDF

Milling Characteristics of Milled Rice According to Milling Ratio of Friction and Abrasive Milling (마찰과 연삭 도정배분에 의한 쌀의 도정특성)

  • Kim, Hoon;Kim, Dong-Chul;Lee, Se-Eun;Kim, Oui-Woung
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.439-445
    • /
    • 2009
  • This study was performed to investigate the optimum abrasive and friction milling ratio. This was accomplished by determining changes in the quality, such as whiteness, moisture content, broken kernel, unstripped embryo rate, and surface characteristics or milling difference, during an abrasive and friction based milling process. When only abrasive was milled, the increase of whiteness was fast in the first milling, whereas the increasing rate of whiteness was small in the latter milling. The decreasing rate of moisture content and broken kernel increased as the friction milling ratio was increased. Combining with the friction milling was considered a suitable method because the unstripped embryo rate was high only when abrasive milling was used. In the case of a high abrasive milling ratio, a significant milling difference was observed in the initial milling. This indicated that the milling difference was not completely eliminated despite using friction milling in the latter milling. Consequently, it was necessary to minimize the milling difference in the initial milling. When milling quality was synthetically considered, the abrasive milling ratio was varied from 20~50%. When the abrasive milling ratio was greater than 40%, the external quality of the rice milled deteriorated since holes and defects generated on the surface in the initial milling were not removed. Due to this deterioration in surface characteristics, an abrasive milling ratio of 30% was identified as a suitable level.

Improvement of the Accuracy in Machining Deep Pocket by Up Milling (상향절삭에 의한 깊은 홈 가공시 정밀도 향상에 대한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.220-228
    • /
    • 1999
  • The machining accuracy has been improved with the development of NC machine tools and cutting tools. However, it is difficult to obtain a high degree of accuracy when machining deep pocket with long end mill, since machining accuracy is mainly dependant on the stiffness of the cutting tool. To improve surface accuracy in machining deep pocket using end mill, the performance by down cut and up cut is compared theoretically and experimentally. To verify usefulness of up milling, various experiments were carried out. As a result, it is found that up milling produce more accurate surface than down milling in machining deep pocket. For effective application of up milling, various values in helix angle, number of teeth, radial depth of cut and axial depth of cut are applied in experiment.

  • PDF

Studies on the Milling, Quality and Storage of Tongil Rice Part I. Milling Condition and Change of Constituent of Rice (통일벼의 도정과 품질 및 저장에 관한 연구 제1보 도정공정과 성분변화)

  • Chung, Dong-Hyo;Kyung, Moon-Hyun;Kong, Joon-Sup;Kim, Hi-Kap
    • Korean Journal of Food Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 1976
  • 1. In the milling process of Tongil rice (brown rice), the milling rate was remarkable at 960 rpm. (rotation per minute), roller mesh of 36 and opening rate of 90%, but the milling ability was found to be best at 1050 rpm., roller mesh of 40 and at opening rate of 100%. 2. The protein content of Tongil rice was 1% higher than the other existing variety. 3. The contents of protein, ash, fiber, vitamin $B_1$ and vitamin $B_2$ varied significantly according to the milling degrees. As an example, at the milling degree of 70%, it was possible to reduce the losses of more than 10% in protein, of more than 30% in vitamin $B_1$, of more than 20% in vitamin $B_2$, as compared to the percentage losses obtained at the milling degree of 100%.

  • PDF

Physicochemical Characteristics and Volatile Compounds of Glutinous Rice Wines Depending on the Milling Degrees (도정도에 따른 찹쌀발효주의 이화학적 특성 및 휘발성 향기성분)

  • Kim, Hye-Ryun;Lee, Ae-Ran;Kwon, Young-Hee;Lee, Hyang-Jeong;Jo, Sung-Jin;Kim, Jae-Ho;Ahn, Byung-Hak
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.75-81
    • /
    • 2010
  • In order to investigate the effects of different milling degrees on the quality of glutinous rice wines, the physicochemical properties and volatile compounds of various wines were evaluated. Sample wines prepared from glutinous rice with 90, 80, and 70% milling yields were analyzed for ethanol, pH, total acids, amino acids, soluble solids, coloring degree, UV absorbance, reducing sugars, organic acids, free sugars and volatile compounds. After fermentation for 17 days, ethanol contents in the wines ranged from 15.2 to 15.85%, while total acid levels ranged from 0.31 to 0.35%. The amino acid contents in four samples ranged from 0.63 to 0.73%, while soluble solid contents ranged from 11.4 to $13.1^{\circ}Bx$. The wine prepared from glutinous rice with a 30% degree of milling showed the highest coloring degree, UV absorbance and reducing sugar content among four samples. Furthermore, this wine had the highest levels of malic acid and acetic acid, while the glutinous rice wine prepared from rice with a 0% degree of milling had the highest levels of succinic acid and lactic acid. In all the glutinous rice wines tested, the most abundant free sugar was glucose followed by maltose. With increasing degree of milling, the alcohol, amino acid and organic acid contents of the glutinous rice wines decreased, whereas soluble solids, coloring degree, UV absorbance, reducing sugar and free sugar contents increased. Volatile compounds were identified using GC-MSD, and thirty-nine esters, seven alcohols, six acids, one aldehyde, four alkanes, one alkene and two miscellaneous compounds were identified in the glutinous rice wines. Using relative peak area, it was determined that other than ethyl alcohol, hexadecanoic acid ethyl ester was the major component and was primarily found in the range of 11.566-18.437%. Succinic acid diethyl ester and isoamyl laurate decreased with an increasing degree of milling, whereas hexanoic acid ethyl ester and 2-octenoic acid ethyl ester increased. Overall, it was shown that different milling degrees greatly affected the physicochemical and volatile characteristics of the glutinous rice wines.