• Title/Summary/Keyword: milling block

Search Result 48, Processing Time 0.024 seconds

Flexural strengths of implant-supported zirconia based bridges in posterior regions

  • Rismanchian, Mansour;Shafiei, Soufia;Nourbakhshian, Farzaneh;Davoudi, Amin
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.346-350
    • /
    • 2014
  • PURPOSE. Impact forces in implant supported FDP (fixed dental prosthesis) are higher than that of tooth supported FDPs and the compositions used in frameworks also has a paramount role for biomechanical reasons. The aim of this study was to evaluate the flexural strength of two different zirconia frameworks. MATERIALS AND METHODS. Two implant abutments with 3.8 mm and 4.5 mm platform were used as premolar and molar. They were mounted vertically in an acrylic resin block. A model with steel retainers and removable abutments was fabricated by milling machine; and 10 FDP frameworks were fabricated for each Biodenta and Cercon systems. All samples were thermo-cycled for 2000 times in $5-55^{\circ}C$ temperature and embedded in $37^{\circ}C$ artificial saliva for one week. The flexural test was done by a rod with 2 mm ending diameter which was applied to the multi-electromechanical machine. The force was inserted until observing fracture. The collected data were analyzed with SPSS software ver.15, using Weibull modulus and independent t-test with the level of significance at ${\alpha}=.05$. RESULTS. The mean load bearing capacity values were higher in Biodenta but with no significant differences (P>.05). The Biodenta frameworks showed higher load bearing capacity ($F_0=1700$) than Cercon frameworks ($F_0=1520$) but the reliability (m) was higher in Cercon (m=7.5). CONCLUSION. There was no significant difference between flexural strengths of both zirconia based framework systems; and both Biodenta and Cercon systems are capable to withstand biting force (even parafunctions) in posterior implant-supported bridges with no significant differences.

Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique

  • Kim, Jae-Hong;Kim, Ki-Baek;Kim, Woong-Chul;Kim, Ji-Hwan;Kim, Hae-Young
    • The korean journal of orthodontics
    • /
    • v.44 no.2
    • /
    • pp.69-76
    • /
    • 2014
  • Objective: This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Methods: Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of interexaminer and inter-method variability. Results: The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. Conclusions: The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models.

Effect of Dispersion Control of Multi-walled Carbon Nanotube in High Filler Content Nano-composite Paste for the Fabrication of Counter Electrode in Dye-sensitized Solar Cell (다중벽 탄소 나노튜브 기반 고충전 나노복합 페이스트를 이용한 염료 감응 태양 전지용 상대 전극의 제조에 있어서 분산 제어의 효과)

  • Park, So Hyun;Hong, Sung Chul
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.470-477
    • /
    • 2013
  • Multi-walled carbon nanotube (MWCNT) based nano-composite pastes having a high filler content are prepared for the facile fabrication of a counter electrode (CE) of dye-sensitized solar cell (DSSC). A polystyrene-based functional block copolymer is prepared through a controlled "living" radical polymerization technique, affording a surface modifier for the dispersion control of MWCNT in the paste. Physical dispersion through a ball-milling method additionally confirms the importance of the dispersion control, providing DSSC with enhanced processibility and improved solar-to-electricity energy conversion efficiency (${\eta}$) values. The performances of the DSSCs are further improved through the incorporation of minor amount of platinum (Pt) nanoparticles into the MWCNT pastes. The DSSC with the Pt/MWCNT hybrid CE exhibits very high ${\eta}$ values, which is superior to that of DSSC with the standard Pt CE.

Synthesis of Methoxy Poly(ethylene glycol)-b-poly($\varepsilon$-caprolactone) Diblock Copolymers and Release Behavior of Albumin for Implantable Protein Carriers (이식형 단백질 전달체로서 메톡시 폴리(에틸렌 글리콜)/폴리카프로락톤 블록 공중합체의 합성 및 알부민의 방출 거동)

  • 서광수;전세강;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.232-238
    • /
    • 2004
  • MPEG-PCL diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) and $\varepsilon$-caprolactone (CL) as drug carriers were synthesized by ring-opening polymerization MPEG-PCL diblock copolymers were characterized by X-ray diffraction and differential scanning calorimetry. After freeze milling of block copolymers and albumin bovine-fluorescein isothiocyanate (FITC-BSA) as model protein, the wafers loaded FITC-BSA were fabricated by direct compression method. The release profiles of FITC-BSA were examined using pH 7.4 PBS for 14 days at 37$^{\circ}C$. The release amount was determined by fluorescence intensity by using the fluorescence spectrophotometer. The morphological change of wafers was observed by digital camera and scanning electron microscope. The release rate and initial burst of BSA increased with increasing PEG molecular weights and decreasing PCL molecular weights in the segments of MPEG -PCL diblock copolymers.

A CAD/CAM-based strategy for concurrent endodontic and restorative treatment

  • Escobar, Patricia Maria;Kishen, Anil;Lopes, Fabiane Carneiro;Borges, Caroline Cristina;Kegler, Eugenio Gabriel;Sousa-Neto, Manoel Damiao
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.27.1-27.12
    • /
    • 2019
  • This case report describes a technique in which endodontic treatment and permanent indirect restoration were completed in the same clinical appointment with the aid of a computer-aided design/computer-aided manufacturing (CAD/CAM) system. Two patients were diagnosed with irreversible pulpitis of the mandibular first molar. After access preparation, root canals were located, irrigation was performed until bleeding ceased, and the coronal tooth structure was prepared for indirect restoration. Then, utilizing an interim 3-mm build-up of the endodontic access cavity, a hemi-arch digital scan was performed with an intraoral scanner. Subsequent to digital scanning, restoration design was performed simultaneously with the endodontic procedure. The root canals were shaped using the Race system under irrigation with 2.5% sodium hypochlorite followed by root canal filling. The pulp chamber was subsequently filled with a 3-mm-thick composite resin restoration mimicking the interim build-up previously utilized to facilitate block milling in the CAD/CAM system. Clinical try-in of the permanent onlay restoration was followed by acid etching, application of a 5th generation adhesive, and cementation of the indirect restoration. Once the restoration was cemented, rubber dam isolation was removed, followed by occlusal adjustment and polishing. After 2 years of follow-up, the restorations were esthetically and functionally satisfactory, without complications.

The study on the shear bond strength of resin and porcelain to Titanium (티타늄에 대한 레진과 도재의 결합 강도에 관한 연구)

  • Park, Ji-Man;Kim, Yeong-Soon;Jun, Sul-Gi;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Statement of problem: Recently, titanium has become popular as superstructure material in implant dentistry because titanium superstructure can be easily milled by means of computer-aided design and manufacture (CAD/CAM) technique. But retention form such as nail head or bead cannot be cut as a result of technical limitation of CAD/CAM milling and bond strength between titanium and porcelain is not as strong as that of conventional gold or metal alloy. Purpose: The objective of this study was to evaluate the shear bond strength of three different materials: heat curing resin, composite resin, porcelain which were bonded to grade II commercially pure Titanium (CP-Ti). Material and methods: Thirty seven CP-Ti discs with 9 mm diameter, 10 mm height were divided into three groups and were bonded with heat curing resin (Lucitone 199), indirect composite resin (Sinfony), and porcelain (Triceram) which were mounted in a former with 7 mm diameter and 1 mm height. Samples were thermocycled for 1000 cycles at between $5-55^{\circ}C$. Shear bond strength (MPa) was measured with Instron Universal Testing Machine with cross head speed of 1 mm/min. The failure pattern was observed at the fractured surface and divided into adhesive, cohesive, and combination failure. The data were analyzed by one-way ANOVA and Scheffe's multiple range test (${\alpha}=0.05$). Results: Lucitone 199 ($17.82{\pm}5.13\;MPa$) showed the highest shear bond strength, followed by Triceram ($12.97{\pm}2.11\;MPa$), and Sinfony ($6.00{\pm}1.31\;MPa$). Most of the failure patterns in Lucitone 199 and Sinfony group were adhesive failure, whereas those in Triceram group were combination failure. Conclusion: Heat curing resin formed the strongest bond to titanium which is used as a CAD/CAM milling block. But the bond strength is still low compared with the bond utilizing mechanical interlocking and there are many adhesive failures which suggest that more studies to enhance bond strength are needed.

Fabrication of additive manufacturing interim denture and comparison with conventional interim denture: A case report (적층가공을 이용한 임시의치 제작 및 기존방식의 임시의치와의 비교 증례)

  • Kim, Hyun-Ah;Lim, Hyun-Pil;Kang, Hyeon;Yang, Hongso;Park, Sang-Won;Yun, Kwi-Dug
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.483-489
    • /
    • 2019
  • With development of digital dentistry, the 3-dimensional (3D) manufacturing industry using computer-aided design and computer-aided manufacturing (CAD/CAM) has grown dramatically in recent years. Denture fabrication using digital method is also increasing due to the recent development of digital technology in dentistry. The 3D manufacturing process can be categorized into 2 types: subtractive manufacturing (SM) and additive manufacturing (AM). SM, such as milling is based on cutting away from a solid block of materal. AM, such as 3D printing, is based on adding the material layer by layer. AM enables the fabrication of complex structures that are difficult to mill. In this case, additive manufacturing method was applied to the fabrication of the resin-based complete denture to a 80 year-old patient. During the follow-up periods, the denture using digital method has provided satisfactory results esthetically and functionally.

Effect of machining precision of single ceramic restorations on the marginal and internal fit (단일 도재 수복물의 가공 정밀도가 변연 및 내면 적합도에 미치는 영향)

  • Son, Keunbada;Yu, Beom-Young;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.313-320
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the machining precision and the marginal and internal fit of single restorations fabricated with three types of lithium disilicate ceramic blocks and to evaluate the correlation. Materials and methods: Single restorations were designed using a CAD software program. The crown designed model file was extracted from the CAD software program. Three types of lithium disilicate blocks (Rosetta; HASS, IPS e.max CAD; Ivoclar vivadent, VITA Suprinity; VITA) were milled using a milling machine. For the fabrication of the crown scanned model file, the intaglio surface of the restoration was digitized using a contact scanner. Then, using the three-dimensional inspection software (Geomagic control X; 3D Systems), the process of the overlap of the crown designed model and the scanned model and 3-dimensional analysis was conducted. In addition, the marginal and internal fit of the crowns was evaluated by a silicone replication method. The difference among three types of single ceramic crown was analyzed using a Kruskal-Wallis H test, and Spearman correlation analysis was performed to analyze the correlation between machining precision and fitness (α=.05). Results: There was a significant difference in the machining precision and the marginal and internal fit according to the type of ceramic block (P<.001). In addition, the machining precision and the marginal and internal fit were positively correlated (P<.001). Conclusion: The marginal fit of crowns fabricated according to the types of ceramic blocks was within the clinically acceptable range (< 120 ㎛), so it can be regarded as appropriate machining precision applicable to all clinical as aspects in terms of the marginal fit.