Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.4.470

Effect of Dispersion Control of Multi-walled Carbon Nanotube in High Filler Content Nano-composite Paste for the Fabrication of Counter Electrode in Dye-sensitized Solar Cell  

Park, So Hyun (Faculty of Nanotechnology and Advanced Materials Engineering, Sejong Polymer Research Center, Sejong University)
Hong, Sung Chul (Faculty of Nanotechnology and Advanced Materials Engineering, Sejong Polymer Research Center, Sejong University)
Publication Information
Polymer(Korea) / v.37, no.4, 2013 , pp. 470-477 More about this Journal
Abstract
Multi-walled carbon nanotube (MWCNT) based nano-composite pastes having a high filler content are prepared for the facile fabrication of a counter electrode (CE) of dye-sensitized solar cell (DSSC). A polystyrene-based functional block copolymer is prepared through a controlled "living" radical polymerization technique, affording a surface modifier for the dispersion control of MWCNT in the paste. Physical dispersion through a ball-milling method additionally confirms the importance of the dispersion control, providing DSSC with enhanced processibility and improved solar-to-electricity energy conversion efficiency (${\eta}$) values. The performances of the DSSCs are further improved through the incorporation of minor amount of platinum (Pt) nanoparticles into the MWCNT pastes. The DSSC with the Pt/MWCNT hybrid CE exhibits very high ${\eta}$ values, which is superior to that of DSSC with the standard Pt CE.
Keywords
dispersion control; surface modifier; multi-walled carbon nanotube; counter electrode; dye-sensitized solar cell;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 F. Gong, H. Wang, and Z. S. Wang, Phys. Chem. Chem. Phys., 13, 17676 (2011).   DOI   ScienceOn
2 M.-Y. Yen, C.-C. Teng, M.-C. Hsiao, P.-I. Liu, W.-P. Chuang, C.-C. M. Ma, C.-K. Hsieh, M.-C. Tsai, and C.-H. Tsai, J. Mater. Chem., 21, 12880 (2011).   DOI   ScienceOn
3 R. Bajpai, S. Roy, P. Kumar, P. Bajpai, N. Kulshrestha, J. Rafiee, N. Koratkar, and D. S. Misra, ACS Appl. Mater. Interfaces, 3, 3884 (2011).   DOI   ScienceOn
4 H. Han, U. Bach, Y.-B. Cheng, R. A. Caruso, and C. MacRae, Appl. Phys. Lett., 94, 103102 (2009).   DOI   ScienceOn
5 P. Li, J. Wua, J. Lin, M. Huang, Y. Huang, and Q. Li, Sol. Energy, 83, 845 (2009).   DOI   ScienceOn
6 S. C. Hong, J. E. Shin, H. J. Choi, H. H. Gong, K. Kim, and N.-G. Park, Ind. Eng. Chem. Res., 49, 11393 (2010).   DOI   ScienceOn
7 H. J. Choi, J. E. Shin, G.-W. Lee, N.-G. Park, K. Kim, and S. C. Hong, Curr. Appl. Phys., 10, S165 (2010).   DOI   ScienceOn
8 H. J. Choi, H. H. Gong, J.-Y. Park, and S. C. Hong, J. Mater. Sci., 48, 906 (2012).
9 V. Tjoa, J. Chua, S. S. Pramana, J. Wei, S. G. Mhaisalkar, and N. Mathews, ACS Appl. Mater. Interfaces, 4, 3447 (2012).   DOI
10 J. Velten, A. J. Mozer, D. Li, D. Officer, G. Wallace, R. Baughman, and A. Zakhidov, Nanotechnology, 23, 085201 (2012).   DOI   ScienceOn
11 Y. Jo, J. Y. Cheon, J. Yu, H. Y. Jeong, C. H. Han, Y. Jun, and S. H. Joo, Chem. Commun., 48, 8057 (2012).   DOI   ScienceOn
12 P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong, and Q. Qiao, ACS Appl. Mater. Interfaces, 2, 3572 (2010).   DOI
13 D. Y. Kang, Y. Lee, C. Y. Cho, and J. H. Moon, Langmuir, 28, 7033 (2012).   DOI   ScienceOn
14 G. S. Paul, J. H. Kim, M. S. Kim, K. Do, J. Ko, and J. S. Yu, ACS Appl. Mater. Interfaces, 4, 375 (2012).   DOI   ScienceOn
15 E. Ramasamy, J. Chun, and J. Lee, Carbon, 48, 4556 (2010).   DOI   ScienceOn
16 D. Noureldine, T. Shoker, M. Musameh, and T. H. Ghaddar, J. Mater. Chem., 22, 862 (2012).   DOI   ScienceOn
17 S. U. Lee, W. S. Choi, and B. Hong, Sol. Energy Mater. Sol. Cells, 94, 680 (2010).   DOI   ScienceOn
18 S. I. Cha, B. K. Koo, S. H. Seo, and D. Y. Lee, J. Mater. Chem., 20, 659 (2010).   DOI   ScienceOn
19 X. Mei, C. S. Jen, B. Fan, and J. Ouyang, Nanotechnology, 21, 395202 (2010).   DOI   ScienceOn
20 W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, ACS Appl. Mater. Interfaces, 1, 1145 (2009).   DOI   ScienceOn
21 J. G. Nam, Y. J. Park, B. S. Kim, and J. S. Lee, Scr. Mater., 62, 148 (2010).   DOI   ScienceOn
22 E. Ramasamy, W. J. Lee, D. Y. Lee, and J. S. Song, Electrochem. Commun., 10, 1087 (2008).   DOI   ScienceOn
23 H. Zhu, H. Zeng, V. Subramanian, C. Masarapu, K. H. Hung, and B. Wei, Nanotechnology, 19, 465204 (2008).   DOI   ScienceOn
24 A. Y. C. H. Yoon, Elast. Compos., 46, 231 (2011).
25 I. H. Choi, M. Park, S.-S. Lee, and S. C. Hong, Eur. Polym. J., 44, 3087 (2008).   DOI   ScienceOn
26 Y.-S. Shim, B.-G. Min, and S.-J. Park, Macromol. Res., 20, 540 (2012).   DOI   ScienceOn
27 C. Longo and M. A. De Paoli, J. Braz. Chem. Soc., 14, 889 (2003).
28 C. Basavaraja, B. S. Kim, and D. S. Huh, Macromol. Res., 19, 233 (2011).   DOI   ScienceOn
29 E. Olsen, G. Hagen, and S. E. Lindquist, Sol. Energy Mater. Sol. Cells, 63, 267 (2000).   DOI   ScienceOn
30 P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, Nat. Mater., 2, 402 (2003).   DOI   ScienceOn
31 G.-B. Lee and C. Nah, Elast. Compos., 47, 272 (2012).   DOI   ScienceOn
32 H. Zhu, J. Wei, K. Wang, and D. Wu, Sol. Energy Mater. Sol. Cells, 93, 1461 (2009).   DOI   ScienceOn
33 W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, J. Photochem. Photobiol. A, 194, 27 (2008).   DOI   ScienceOn
34 E. Ramasamy, W. J. Lee, D. Y. Lee, and J. S. Song, Appl. Phys. Lett., 90, 173103 (2007).   DOI   ScienceOn
35 Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, and Q. Meng, Electrochem. Commun., 9, 596 (2007).   DOI   ScienceOn
36 W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, Sol. Energy Mater. Sol. Cells, 92, 814 (2005).
37 K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J.-I. Nakamura, and K. Murata, Sol. Energy Mater. Sol. Cells, 79, 459 (2003).   DOI   ScienceOn
38 M. Latifatu, K. M. Kim, Y. J. Kim, and J. M. Ko, Elast. Compos., 47, 292 (2012).   DOI   ScienceOn
39 A. Kay and M. Gratzel, Sol. Energy Mater. Sol. Cells, 44, 99 (1996).   DOI   ScienceOn
40 G. Veerappan, K. Bojan, and S. W. Rhee, ACS Appl. Mater. Interfaces, 3, 857 (2011).   DOI   ScienceOn
41 S. Y. Jang, Y. G. Kim, D. Y. Kim, H. G. Kim, and S. M. Jo, ACS Appl. Mater. Interfaces, 4, 3500 (2012).   DOI   ScienceOn
42 A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev., 110, 6595 (2010).   DOI   ScienceOn
43 J. D. Roy-Mayhew, G. Boschloo, A. Hagfeldt, and I. A. Aksay, ACS Appl. Mater. Interfaces, 4, 2794 (2012).   DOI   ScienceOn
44 T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, and M. Gratzel, J. Electrochem. Soc., 153, A2255 (2006).   DOI   ScienceOn
45 H. Choi, H. Kim, S. Hwang, W. Choi, and M. Jeon, Sol. Energy Mater. Sol. Cells, 95, 323 (2011).   DOI   ScienceOn
46 M. Gratzel, Prog. Photovolt. Res. Appl., 8, 171 (2000).   DOI   ScienceOn
47 B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, Sol. Energy Mater. Sol. Cells, 90, 549 (2006).   DOI   ScienceOn
48 Y.-S. Yen, H.-H. Chou, Y.-C. Chen, C.-Y. Hsu, and J. T. Lin, J. Mater. Chem., 22, 8734 (2012).   DOI   ScienceOn
49 T. N. Murakami and M. Gratzel, Inorg. Chim. Acta, 361, 572 (2008).   DOI   ScienceOn
50 L.-L. Li, C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu, and E. Wei-Guang Diau, J. Mater. Chem., 22, 6267 (2012).   DOI   ScienceOn
51 T.-L. Hsieh, H.-W. Chen, C.-W. Kung, C.-C. Wang, R. Vittal, and K.-C. Ho, J. Mater. Chem., 22, 5550 (2012).   DOI   ScienceOn
52 Z. Lan, J. Wu, J. Lin, and M. Huang, J. Mater. Chem., 22, 3948 (2012).   DOI   ScienceOn
53 H. Boennemann, G. Khelashvili, S. Behrens, A. Hinsch, K. Skupien, and E. Dinjus, J. Clust. Sci., 18, 141 (2007).   DOI   ScienceOn