• Title/Summary/Keyword: milk proteins

Search Result 229, Processing Time 0.025 seconds

Innate immunity and carbohydrate metabolism alterations precede occurrence of subclinical mastitis in transition dairy cows

  • Dervishi, Elda;Zhang, Guanshi;Hailemariam, Dagnachew;Dunn, Suzana M.;Ametaj, Burim N.
    • Journal of Animal Science and Technology
    • /
    • v.57 no.12
    • /
    • pp.46.1-46.19
    • /
    • 2015
  • Background: This study examined whether activation of innate immunity and alterations of carbohydrate and lipid metabolism precede development of subclinical mastitis (SCM). Methods: Blood samples were collected from the coccygeal vein from 100 Holstein dairy cows at -8, -4, disease diagnosis week, and +4 weeks postpartum. Six healthy cows (controls - CON) and six cows that showed clinical signs of SCM were selected for serum analyses. All serum samples were analyzed for acute phase proteins (APP) haptoglobin (Hp) and serum amyloid A (SAA); proinflammatory cytokines including interleukin 1 (IL-1), IL-6, and tumor necrosis factor (TNF) and serum lactate, BHBA, and NEFA concentration. Data of DMI, milk production, and milk composition were recorded and analyzed. Results: The results showed that cows with SCM had greater concentrations of SAA, TNF (P < 0.01), and lactate before expected day of parturition (P < 0.05) compared to CON cows. Cows with SCM showed greater concentrations of lactate starting at -8 weeks (P < 0.05) and TNF starting at -4 weeks prior to the expected day of parturition (P < 0.01). Interestingly, at -4 weeks, concentrations of IL-1 and Hp were lower in cows with SCM compared to healthy cows (P < 0.01) followed by an increase during the week of disease diagnosis (P < 0.05). Subclinical mastitis was associated with lower DMI, at -4 weeks before calving, milk production (P < 0.05) and increased somatic cell counts (SCC) (P < 0.01). Conclusions: Results of this study suggest that SCM is preceded by activated innate immunity and altered carbohydrate metabolism in transition dairy cows. Moreover the results support the idea that Hp, lactate, and SAA, at -8 weeks, and TNF and IL-1 at -4 weeks can be used as early indicators to screen cows during dry off for disease state.

Cloning and Molecular Characterization of Porcine β-casein Gene (CNS2)

  • Lee, Sang-Mi;Kim, Hye-Min;Moon, Seung-Ju;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.421-427
    • /
    • 2012
  • The production of therapeutic proteins from transgenic animals is one of the most important successes of animal biotechnology. Milk is presently the most mature system for production of therapeutic proteins from a transgenic animal. Specifically, ${\beta}$-casein is a major component of cow, goat and sheep milk, and its promoter has been used to regulate the expression of transgenic genes in the mammary gland of transgenic animals. Here, we cloned the porcine ${\beta}$-casein gene and analyzed the transcriptional activity of the promoter and intron 1 region of the porcine ${\beta}$-casein gene. Sequence inspection of the 5'-flanking region revealed potential DNA elements including SRY, CdxA, AML-a, GATA-3, GATA-1 and C/EBP ${\beta}$. In addition, the first intron of the porcine ${\beta}$-casein gene contained the transcriptional enhancers Oct-1, SRY, YY1, C/EBP ${\beta}$, and AP-1, as well as the retroviral TATA box. We estimated the transcriptional activity for the 5'-proximal region with or without intron 1 of the porcine ${\beta}$-casein gene in HC11 cells stimulated with lactogenic hormones. High transcriptional activity was obtained for the 5'-proximal region with intron 1 of the porcine ${\beta}$-casein gene. The ${\beta}$-casein gene containing the mutant TATA box (CATAAAA) was also cloned from another individual pig. Promoter activity of the luciferase vector containing the mutant TATA box was weaker than the same vector containing the normal TATA box. Taken together, these findings suggest that the transcription of porcine ${\beta}$-casein gene is regulated by lactogenic hormone via intron 1 and promoter containing a mutant TATA box (CATAAAA) has poor porcine ${\beta}$-casein gene activity.

Fermentation Properties and Inflammatory Cytokines Modulating of Fermented Milk with Curcuma longa L Powder (강황을 첨가한 발효유의 발효특성과 면역조절 효과)

  • Gereltuya, Renchinkhand;Son, Ji Yoon;Magsar, Urgamal;Paik, Seung-Hee;Lee, Jo Yoon;Nam, Myoung Soo
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • Curcuma longa L. (CL), a traditional medicinal plant, is well known as a functional food ingredient. The major component of CL is a curcumin of anthocyanin family that has multi-functions such as antimicrobial, anticancer, and antioxidant activity. In this study, fermented milk containing CL was prepared using a mixed strain culture (Bifidobacterium bifidus, Streptococcus thermophilus, Lactobacillus acidophilus), and its physicochemical properties were characterized. In addition, inflammatory cytokine-modulating effects of the fermented milk were also investigated. As regards the properties of fermented milk, the growth rate of lactic acid bacteria in fermented milk containing CL was found to be remarkably more rapid than control. During fermentation, caseins and whey proteins were observed to be partially hydrolyzed, and lactic acid and acetic acid were produced in larger amounts than in the control. The sensory score of fermented milk containing CL was lower than control, owing to its bitter taste and strong flavor. RAW 264.7 cells treated with CL fermented milk supernatant showed no cytotoxicity. Inflammatory cytokines such as tumor necrosis factor-alpha (TNF-${\alpha}$) and interleukin-6 (IL-6) were significantly produced by fermented milk with CL, compared to control. The secretion of nitric oxide (NO) from RAW 264.7 cells significantly increased relative to the control. Results from the present study suggested that CL could be used as a natural immunomodulating ingredient for making yogurts, beverages, and other products.

MILK PROTEIN POLYMORPHISMS AS GENETIC MARKER IN KOREAN NATIVE CATTLE

  • Chung, E.R.;Han, S.K.;Rhim, T.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.2
    • /
    • pp.187-194
    • /
    • 1995
  • Genetic variants of ${\alpha}s_1$-casein, ${\beta}$-casein, ${\kappa}$-casein and ${\beta}$-lactoglobulin were investigated by starch urea gel electrophoresis in milk samples of 280 Korean native cattle. A new ${\beta}$-casein variant, designated ${\beta}$-casein $A^4$, was found in milk samples of Korean native cattle. It has a much slower electrophoretic mobility than the ${\beta}$-casein $A^3$ variant in acid gel. This new variant appeared together with either ${\beta}$-casein $A^1$, $A^2$ or B variant. Gene frequencies and genotypic frequencies were estimated. Gene frequencies of four milk protein loci in Korean native cattle were compared with those of imported cattle breeds raised in Korea and Japanese brown cattle. Gene frequencies were ${\alpha}s_1$-casein B .846, ${\alpha}s_1$-casein C .154; ${\beta}$-casein $A^1$ .216, ${\beta}$-casein $A^2$ .666, ${\beta}$-casein $A^4$ .048, ${\beta}$-casein B .070; ${\kappa}$-casein A .648, ${\kappa}$-casein B .352; ${\beta}$-lactoglobulin A .148, ${\beta}$-lactoglobulin B .852. The population was in Hardy-Weinberg equilibrium at all milk protein loci. Gene frequencies of Korean native cattle were very similar to those of Japanese brown cattle. Interestingly, a new variant, ${\beta}$-casein $A^4$, was found only in Korean native cattle and Japanese brown cattle. These results support the hypothesis that Korean native cattle were used in the development of the Japanese brown cattle.

The Expression Changes of Casein mRNAs in Mammary Epithelial Cells Recovered from Bovine Milk during the Lactation Period

  • Ishii, Hiroshi;Nakamura, Tadashi;Higuchi, Munenori;Mamada, Aya;Fukushima, Michihiro;Urashima, Tadasu;Arai, Ikichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.983-988
    • /
    • 2007
  • The aim of this study was to examine the correlation between bovine casein (CN) mRNA expression levels in mammary epithelial cells and lactation period, the yields of milk proteins and other parameters. The cells were collected from each cow's milk, which contained somatic cell counts (SCC) of less than 100,000 cells/ml. The levels of ${\alpha}s1-$, ${\alpha}s2-$, ${\beta}$- and ${\kappa}$-CN mRNA expression were significantly correlated with each other in mammary epithelial cells (p<0.01). All cows produced either less than 30 kg/day/cow or a over 30 kg/day/cow level of milk yield (MY). It was shown that the CN mRNA expression levels decreased gradually from the calving period to late lactation, when MY was over 30 kg/day/cow. The SCC tended to increase gradually during the course of lactation, but it was negatively correlated with milk protein and CN yields (p<0.01) when MY was less than 30 kg/day/cow. Moreover, there was a tendency for a negative correlation between SCC and ${\alpha}s1$-CN and ${\beta}$-CN mRNA expression level, when MY was less than 30 kg/day/cow (p<0.05).

Acid Production by Lactic Acid Bacteria in Soy Milk Treated by Microbial Pretense or Papain and Preparation of Soy Yogurt (미생물 Protease 또는 Papain으로 처리된 두유에서 젖산균의 산생함과 대두요구르트의 제조)

  • Ko, Young-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.379-386
    • /
    • 1989
  • The soy milk prepared from soy protein concentrate was treated with microbial protease or papain. Growth and acid production by Lactobacillus acidophilus in soy milk containing partially hydrolyzed proteins were investigated. Sensory evaluation of yogurt beverage prepared from protease treated soy milk was also performed. Protease treatment of soy milk enhanced acid production by lactic acid bacteria, particularly in case of microbial pretense and simultaneous treatment by two types of protease showed synergistic effect. pH and number of viable cells were not affected markedly by pretense treatment. Microbial pretense treatment up to 15 minutes or papain treatment up to 45 minutes enhanced acid production, but further treatment up to three hours did not affect the acidity markedly. rho sensory evaluation showed that overall acceptability and taste of soy yogurt beverage were slightly improved when soy milk was treated with microbial pretense of 0.2% or papain of 0.2%. The amount of non-protein nitrogen considerably increased by pretense treatment of 15 minutes and it increased gradually by further treatment up to three hours.

  • PDF

Experimental and Modelling Study of the Denaturation of Milk Protein by Heat Treatment

  • Qian, Fang;Sun, Jiayue;Cao, Di;Tuo, Yanfeng;Jiang, Shujuan;Mu, Guangqing
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.44-51
    • /
    • 2017
  • Heat treatment of milk aims to inhibit the growth of microbes, extend the shelf-life of products and improve the quality of the products. Heat treatment also leads to denaturation of whey protein and the formation of whey protein-casein polymer, which has negative effects on milk product. Hence the milk heat treatment conditions should be controlled in milk processing. In this study, the denaturation degree of whey protein and the combination degree of whey protein and casein when undergoing heat treatment were also determined by using the Native-PAGE and SDS-PAGE analysis. The results showed that the denaturation degree of whey protein and the combination degree of whey protein with casein extended with the increase of the heat-treated temperature and time. The effects of the heat-treated temperature and heat-treated time on the denaturation degree of whey protein and on the combination degree of whey protein and casein were well described using the quadratic regression equation. The analysis strategy used in this study reveals an intuitive and effective measure of the denaturation degree of whey protein, and the changes of milk protein under different heat treatment conditions efficiently and accurately in the dairy industry. It can be of great significance for dairy product proteins following processing treatments applied for dairy product manufacturing.

Analysis of Changes in Colostrum Proteins by Mammalian Species (포유류의 종에 따른 초유 단백질의 변화에 대한 분석)

  • Kim, Seung Hee;Kim, Woan-Sub
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.105-111
    • /
    • 2017
  • There have been numerous reports indicating that milk proteins influence immune functions. Colostrum refers to the breast milk of mammals, secreted starting from the fourth or fifth day after delivery. It has abundant nutrition for the survival of newborn infants. Most importantly, it contains bioactive substances with growth-stimulating and antibiotic, functions. Thus, the colostrum has various physiological roles. This study measured the differences in the composition of colostrum derived from dairy cattle, hanwoo, porcine, and goat sources. The results showed that immunoglobulin, lactoferrin, lactoperoxidase, serum albumin, IgG heavy chain, and IgG light chain were significantly higher in the colostrum of dairy cattle, hanwoo, and goats, but low in porcine colostrum. There was no significant difference in ${\alpha}_{S2}$-casein, ${\alpha}_{S1}$-casein, ${\beta}$-casein, ${\kappa}$-casein, ${\beta}$-lactoglobulin, and ${\alpha}$-lactalbumin contents until seven days after birth. However, porcine colostrum showed high contents of all proteins from the first day to the second day after delivery.

Expression of Recombinant Bovine Lactoferrin and Lactoferrin N-lobe in Rhodococcus erythropolis at Low Temperature (저온에서 Rhodococcus erythropolis 균주로부터 재조합 젖소 Lactoferrin과 Lactoferrin N-lobe의 발현)

  • Kim Woan-Sub;Kim Gur-Yoo;Kwon Ill-Kyung;Goh Juhn-Su
    • Food Science of Animal Resources
    • /
    • v.25 no.2
    • /
    • pp.232-237
    • /
    • 2005
  • Lactoferrin is a member of the transferrin family of iron-binding glycoproteins. It is originally found in milk. In addition to its antibacterial and antiviral activities, lactoferrin has many other biological functions include anti-inflammatory properties, antitumor, cell growth-promoting activity as well as antioxidant effect In the present study, we report the production of recombinant bovine lactoferrin and lactoferrin N-lobe in the Rhodococcus erythropolis (R erythropolis) using pTip vector. The expression level was investigated in various range of temperature, and we could successfully expressed the bovine lactoferrin and lactoferrin N-lobe in R erythropolis at low temperature. The recombinant proteins were purified by Nickel-Nitrolotriacetic acid (Ni-NTA). The purified proteins were confirmed by SDS-PAGE and Western blot, which indicating that the recombinant proteins have a molecular weight of 80kDa and 43kDa for bovine lactoferrin and lactoferrin N-lobe, respectively.

Extended latex proteome analysis deciphers additional roles of the lettuce laticifer

  • Cho, Won-Kyong;Chen, Xiong-Yan;Rim, Yeong-Gil;Chu, Hyo-Sub;Jo, Yeon-Hwa;Kim, Su-Wha;Park, Zee-Yong;Kim, Jae-Yean
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.311-319
    • /
    • 2010
  • Lettuce is an economically important leafy vegetable that accumulates a milk-like sap called latex in the laticifer. Previously, we conducted a large-scale lettuce latex proteomic analysis. However, the identified proteins were obtained only from lettuce ESTs and proteins deposited in NCBI databases. To extend the number of known latex proteins, we carried out an analysis identifying 302 additional proteins that were matched to the NCBI non-redundant protein database. Interestingly, the newly identified proteins were not recovered from lettuce EST and protein databases, indicating the usefulness of this hetero system in MudPIT analysis. Gene ontology studies revealed that the newly identified latex proteins are involved in many processes, including many metabolic pathways, binding functions, stress responses, developmental processes, protein metabolism, transport and signal transduction. Application of the non-redundant plant protein database led to the identification of an increased number of latex proteins. These newly identified latex proteins provide a rich source of information for laticifer research.