References
- Wilson DJ, Gonzales RN, Das HH. Bovine mastitis pathogen in New York and Pennsylvania: prevalence and effects on somatic cell count and milk production. J Dairy Sci. 1997;80:2592-8. https://doi.org/10.3168/jds.S0022-0302(97)76215-5
- Pitkala A, Haveri M, Pyorala S, Myllys V, Honkanen- Buzalski T. Bovine mastitis in Finland 2001- prevalence, distribution of bacteria, and antimicrobial resistance. J Dairy Sci. 2004;87:2433-41. https://doi.org/10.3168/jds.S0022-0302(04)73366-4
- Tylor JW, Cullor JS. Mammary gland health and disorders. In: Smith BP, editor. Large animal internal medicine. 3rd ed. London: Mosby; 1990. p. 1019-22.
- Sharma N, Singh NK, Bhadwal MS. Relationship of somatic cell count and mastitis: an overview. Asin-Aust J Anim Sci. 2011;24:429-38. https://doi.org/10.5713/ajas.2011.10233
- Hillerton JE. Redefining mastitis based on somatic cell count. IDF Bull. 1999;345:4-6.
- Kromker V, Graowski NT, Redetzky R, Hamann J. Detection of mastitis using selected quarter milk parameters. Canada: 2nd Intl Symp Bovine Mastitis and Milk Quality Vancouver; 2001. p. 486-7.
- Bailey T. Negative influence of subclinical mastitis. Virginia Cooperative Extension. Available at: http://www.ext.vt.edu/news/periodicals/dairy/1996-10/subclinmast.html.
- Rahman MM, Mazzilli M, Pennarossa G, Brevini TAL, Zecconi A, Gandolfi F. Chronic mastitis is associated with altered ovarian follicle development in dairy cattle. J Dairy Sci. 2012;95:1885-93. https://doi.org/10.3168/jds.2011-4815
- Roth Z, Dvir A, Kalo D, lavon Y, Krifucks O, Wolfenson D, et al. Naturally occurring mastitis disrupts developmental compentence of bovine oocytes. J Dairy Sci. 2013;96:1-7. https://doi.org/10.3168/jds.2012-5409
- Schrick FN, Hockett ME, Saxton AM, Lewis MJ, Dowlen HH, Oliver SP. Influence of subclinical mastitis during early lactation on reproductive parameters. J Dairy Sci. 2001;84:1047-412.
- Persson Y, Nyman AKJ, Gronlund- Andersson U. Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden. Acta Vet Scandinavica. 2011;53:36. https://doi.org/10.1186/1751-0147-53-36
- Hamann J, Kromker V. Potential of specific milk composition variables for cow health management. Livestock Prod Sci. 1997;48:201-8. https://doi.org/10.1016/S0301-6226(97)00027-4
- Davis SR, Farr VC, Prosser CG, Nicholas GD, Turner SA, Lee J. Milk L-lactate concentration is increased during mastitis. J Dairy Sci. 2004;71:175-81.
- Lakshmi R, Thanislass J, Antony PX, Mukhopadhyay HK. Haptaglobin gene expression in spontaneous bovine subclinical mastitis caused by staphylococcus and coliforms microbes. Anim Sci Repor. 2014;8:9-17.
- Ohzato H, Yoshizaki K, Nishimoto N, Ogata A, Tagoh H, Monden M, et al. Interleukin -6 as a new indicator of inflammatory status: detection of serum levels of interleukin-6 and C-reactive protein after surgery. Surgery. 1992;111:201-9.
- Ametaj BN, Hosseini A, Odhiambo JF, Iqbal S, Deng Q, Lam TH, et al. Application of acute phase proteins for monitoring inflammatory states in cattle. In: Francisco Veas, editor. Acute phase proteins as early non-specific biomarkers of human and veterinary diseases. InTech, 2011. pp. 299-354.
- Nielsen BH, Jacobsen S, Andersen PH, Niewold TA, Heegaard PMH. Acute phase proteins concentration in serum and milk from cows with clinical mastitis with extramammary inflammatory conditions and clinically healthy cows. Vet Rec. 2004;154:361-5. https://doi.org/10.1136/vr.154.12.361
- O’Mahony MC, Healy AM, Harte D, Walshe KG, Torgerson PR, Doherty ML. Milk amyloid a: correlation with cellular indices of mammary inflammation in cows with normal and raised serum amyloid a. Res Vet Sci. 2006;80:155-61. https://doi.org/10.1016/j.rvsc.2005.05.005
- Molenaar AJ, Harris DP, Rajan GH, Pearson ML, Callagan MR, Sommer L, et al. The acute-phase protein serum amyloid A3 is expressed in the bovine mammary gland and plays role in host defense. Biomarkers. 2009;14:26-37. https://doi.org/10.1080/13547500902730714
- Akerstedt M, Forseback L, Larsen T, Svennersten-Sjaunja K. Natural variation in biomarkes indicating mastitis in healthy cows. J Dairy Res. 2011;78:88-96. https://doi.org/10.1017/S0022029910000786
- Eckersall PD, Young FJ, McComb C, Hogarth CJ, Safi S, Weber A, et al. Acute phase proteins in serum and milk from dairy cows with clinical mastitis. Vet Rec. 2001;148:35-41. https://doi.org/10.1136/vr.148.2.35
- Gronlund U, Hallen SC, Persson WK. Haptoglobin and erum amyloid A in milk from dairy cows with chronic sub-clinical mastisi. Vet Res. 2005;36:191-8. https://doi.org/10.1051/vetres:2004063
- Eckersall PD, Young FJ, Nolan AM, Knight CH, McComb C, Waterson MM, et al. Acute phase proteins in bovine milk in an experimentatl model of Staphylococcus aureus subclinical mastitis. J Dairy Sci. 2006;89:1488-501. https://doi.org/10.3168/jds.S0022-0302(06)72216-0
- Hiss S, Mueller U, Neu-Zahren A, Sauverwein H. Haptaglobin and lactate dehydrogenase measurements in milk for the identification of subclinically diseased udder quarters. Vet Med. 2007;52:245-52.
- Suojala L, Orro T, Jarvinen H, Saatsi J, Pyorala S. Acute phase response in two consecutive experimentally induce E. coli intramammary infections in dairy cows. Acta Vet Scandinavica. 2008;50:18. https://doi.org/10.1186/1751-0147-50-18
- Canadian Council on Animal Care. Guide to the care and Use of experimental animals, vol. 1. 2nd ed. Ottawa, ON, Canada: CCAC; 1993.
- Iqbal S, Zebeli Q, Mazzolari A, Dunn SM, Ametaj BN. Barley grain- based diet treated with lactic acid and heat modulated plasma metabolites and acute phase response in dairy cows. J Anim Sci. 2012;90:3143-52. https://doi.org/10.2527/jas.2011-3983
- Iqbal S, Zebeli Q, Mazzolari A, Dunn SM, Ametaj BN. Feeding rolled barley grain steeped in lactic acid modulated energy status and innate immunity in dairy cows. J Dairy Sci. 2010;93:5147-56. https://doi.org/10.3168/jds.2010-3118
- Ametaj BN, Koenign KM, Dunn SM, Yang WZ, Zebeli Q, Beauchemin KA. Backgrounding and finishing diets are associated with inflammatory responses in feedlot steers. J Anim Sci. 2009;87:1314-20. https://doi.org/10.2527/jas.2008-1196
- Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomics data analysis and interpretation. Nucleic Acids Res. 2009;37:652-60. https://doi.org/10.1093/nar/gkp356
- Xia J, Sinelnikov IV, Han B,Wishart DS. MetaboAnalyst 3.0--making metabolomics more meaningful. Nucleic Acids Res. 2015; doi:10.1093/nar/gkv380.
-
Lehtolainen T, Ronved C, Pyorala S. Serum amyloid A and
$TNF{\alpha}$ in serum and milk during experimental endoxin mastitis. Vet Res. 2004;35:651-9. https://doi.org/10.1051/vetres:2004043 - Blum J, Dosogne H, Hoeben D, Vangroenweghe F, Hammon H, Bruckmaier R, et al. Tumor necrosis alpha and nitrite/nitrate responses during acute mastitis induced by Eschericia coli infection and endotoxin in dairy cows. Domest Anim Endocrinol. 2000;19:223-35. https://doi.org/10.1016/S0739-7240(00)00079-5
-
Hoeben D, Burvenich C, Trevis E, Bertoni G, Hamann J, Bruckmaier R, et al. Role of endotoxin and
$TNF{\alpha}$ in the pathogenesis of experimentally induced coliform mastitis in periparturient cows. J Dairy Res. 2000;67:503-14. https://doi.org/10.1017/S0022029900004489 - Hisaeda K, Hagiwara K, Eguchi J, Yamanaka H, Kirisawa R, Iwai H. Interferon-gamma and tumor necrosis factor-alpha levels in sera and whey of cattle with naturally occurring coliform mastitis. J Vet Med Sci. 2001;63:1009-11. https://doi.org/10.1292/jvms.63.1009
- Nakajima Y, Mikami O, Yoshioka M, Motoi Y, Ito T, Ishikawa Y, et al. Elevated levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) activities in the sera and milk of cows with naturally occurring coliform mastitis. Res Vet Sci. 1997;62:297-8. https://doi.org/10.1016/S0034-5288(97)90209-5
- Politis I, McBride BW, Burton JH, Zhao X, Turner JD. Secretion of interleukin-1 by bovine milk macrophages. Am J Vet Res. 1991;52:858-62.
- Riollet C, Rainard P, Poutrel B. Cells and cytokines in inflammatory secretions of bovine mammary gland. Adv Exp Med Biol. 2000;480:247-58.
- Jiang L, Sorensen P, Rontved C, Vels L, Ingvartsen KL. Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide. BMC Genomics. 2008;9:443. https://doi.org/10.1186/1471-2164-9-443
- Minuti A, Zhou Z, Graugnard DE, Rodriguez-Zas SL, Palladino AR, Cardoso FC, et al. Acute mammary and liver transcriptome responses after an intramammary Escherichia coli lipopolysaccharide challenge in postpartal dairy cows. Physiol Rep. 2015;3, e12388. https://doi.org/10.14814/phy2.12388
- Sheldon IM, Noakes DE, Rycroft AN, Dobson H. Acute phase protein responses to uterine bacterial contamination in cattle after calving. Vet Rec. 2001;148:172-5. https://doi.org/10.1136/vr.148.6.172
- Quaye IK. Haptoglobin, inflammation and disease. Trans R Soc Trop Med Hyg. 2008;102:735-42. https://doi.org/10.1016/j.trstmh.2008.04.010
- Humblet MF, Guyot H, Boudry B, Mbayahi F, Hanzen C, Rollin F, et al. Relationship between haptoglobin, serum amyloid A, and clinical status in a survey of dairy herds during a 6- month period. Vet Clin Pathol. 2006;35:188-93. https://doi.org/10.1111/j.1939-165X.2006.tb00112.x
- Rezamand P, Hoagland TA, Moyes KM, Silbart LK, Andrew SM. Energy status, lipid- soluble vitamins and acute phase proteins in periparturient Holstein and Jersey dairy cows with or without subclinical mastitis. J Dairy Sci. 2007;90:5097-107. https://doi.org/10.3168/jds.2007-0035
- Wassell J. Haptoglobin: function and polymorphism. Clin Lab. 2000;46:547-52.
- Gronlund U, Hulten C, Eckersall PD, Hogarth C, Waller KP. Haptaglobin and serum amyloid A in milk and serum during acute and chronic experimentally induced Staphylocossus aureus mastitis. J Dairy Res. 2003;70:379-86. https://doi.org/10.1017/S0022029903006484
- Gerardi G, Bernardini D, Azzurra Elia C, Ferrari V, Iob L, Segato S. Use of serum amyloid A and milk amyloid A in the diagnosis of subclinical mastitis in dairy cows. J of Dairy Res. 2009;76:411-7. https://doi.org/10.1017/S0022029909990057
- Ametaj BN, Bradford BJ, Bobe G, Nafikov RA, Lu Y, Young JW, et al. Strong relationships between mediators of acute phase response and fatty liver in dairy cows. Can J Anim Sci. 2005;85:165-75. https://doi.org/10.4141/A04-043
- Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A, Ressler JA, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004;32:1637-42. https://doi.org/10.1097/01.CCM.0000132904.35713.A7
- Arnold RC, Shapiro NI, Alan EJ, Schorr C, Pope J, Casner E, et al. Multicenter study of early lactate clearance as a determinant of survival in patients with presumed sepsis. Shock. 2009;32:35-9. https://doi.org/10.1097/SHK.0b013e3181971d47
- Meszaros K, Lang CH, Bagby GJ, Spitzer JJ. Contribution of different organs to increased glucose consumption after endotoxin administration. J of Biological Chem. 1987;262:10965-70.
- Lang CH, Bagby GJ, Spitzer JJ. Glucose kinetics and body temperature after lethal and nonlethal doses of endotoxin. Am J Physiol. 1985;248:471-8.
- Lopez-Villegas D, Lenkinski RE, Wehrli SL, Ho WZ, Douglas SD. Lactate production by human monocytes/macrophages determined by proton mr spectroscopy. MRM. 1995;34:2-38.
- Taylor DJ, Whitehead RJ, Evanson JM, Westmacott D, Feldman M, Bertfield H. Effect of recombinant cytokines on glycolysis and fructose 2, 6-bisphosphate in rheumatoid synovial cells in vitro. Biochem J. 1998;250:111-5.
- Husain Z, Huang Y, Seth P, Sukhatme VP. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol. 2013;191:1486-95. https://doi.org/10.4049/jimmunol.1202702
- Fischer B, Muller B, Fischer KG, Baur N, Kreutz W. Acidic pH inhibits non-MHC-restricted killer cell functions. Clin Immunol. 2000;96:252-63. https://doi.org/10.1006/clim.2000.4904
- Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, et al. Kreutz M Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 2006;107:2013-21. https://doi.org/10.1182/blood-2005-05-1795
- Shime H, Yabu M, Akazawa T, Kodama K, Matsumoto M, Seya T, et al. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J Immunol. 2008;180:7175-83. https://doi.org/10.4049/jimmunol.180.11.7175
- Ingvartsen KL, Andersen JB. Integration of metabolism and intake regulation: a review focusing on periparturient animals. J Dairy Sci. 2000;83:1573-97. https://doi.org/10.3168/jds.S0022-0302(00)75029-6
- Gonzalez LA, Tolkamp BJ, Coffey MP, Ferret A, Kyriazakis I. Changes in feeding behavior as possible indicator for the automatic monitoring of health disorders in dairy cows. J of Dairy Sci. 2008;91:1017-28. https://doi.org/10.3168/jds.2007-0530
- Huzzey JM, Viera DM, Weary DM, Von Keyserlingk MAG. Prepartum behavior and dry matter intake identify dairy cows at risk with metritis. J of Dairy Sci. 2007;95:3220-33.
- Goff JP. Major advances in our understanding of nutritional influences on bovine health. J of Dairy Sci. 2006;89:1292-301. https://doi.org/10.3168/jds.S0022-0302(06)72197-X
- Lohuis JACM, Verheijden JHM, Burvenich C, van Miert ASJPAM. Pathophysiological effects of endotoxins in ruminants. Vet Q. 1988;10:109-25. https://doi.org/10.1080/01652176.1988.9694157
- Steiger M, Senn M, Altreuther G, Werling D, Sutter F, Kreuzer M, et al. Effect of a prolonged low-dose lipopolysaccharide infusion on feed intake and metabolism in heifers. J Anim Sci. 1999;77:2523-32. https://doi.org/10.2527/1999.7792523x
- Allen MS, Bradford BJ. The cow as a model to study food intake regulation. Annu Rev Nutr. 2005;25:523-47. https://doi.org/10.1146/annurev.nutr.25.050304.092704
- Mungube EO, Tenhagen BA, Regassa F, Kyule MN, Shiferaw Y, Kasa T, et al. Reduced milk production in udder quarters with subclinical mastitis and associated economic losses in crossbred dairy cows in Ethiopia. Tropical Anim Health Prod. 2005;37:503-12. https://doi.org/10.1007/s11250-005-7049-y
- Theas MS, De Laurentiis A, Lasaga M, Pisera D, Duvilanski BH, Seilicovich A. Effect of lipopolysaccharide on tumor necrosis factor and prolactin release from rat anterior pituitary cells. Endocrine. 1998;8:241-5.
-
Kushibiki S, Hodate K, Shingu H, Obara Y, Touno E, Shinoda M. Metabolic and lactational responses during recombinant bovine tumor necrosis factor-
${\alpha}$ treatment in lactating cows. J Dairy Sci. 2003;86:819-27. https://doi.org/10.3168/jds.S0022-0302(03)73664-9 - Zebeli Q, Dijkstra J, Tafaj M, Steingass H, Ametaj BN, Drochner W. Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. J Dairy Sci. 2008;91:2046-66. https://doi.org/10.3168/jds.2007-0572
- Zebeli Q, Aschenbach JR, Tafaj M, Boguhn J, Ametaj BN, Drochner W. Role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle. J Dairy Sci. 2012;95:1041-56. https://doi.org/10.3168/jds.2011-4421
- Duffield TF, Kelton DF, Leslie KE, Lissemore KD, Lumsden JH. Use of test day milk fat and milk protein to detect subclinical ketosis in dairy cattle in Ontario. Can Vet J. 1997;38:713-8.
- Zebeli Q, Ametaj BN. Relationships between rumen lipopolysaccharide and mediators of inflammatory response with milk fat production and efficiency in dairy cows. J Dairy Sci. 2009;92:3800-9. https://doi.org/10.3168/jds.2009-2178
- Sargeant JM, Leslie KE, Shirley JE, Pulkrabek BJ, Lim GH. Sensitivity and specificity of somatic cell account and California mastitis test for identifying intramammary infection in early lactation. J Dairy Sci. 2001;84:2018-24. https://doi.org/10.3168/jds.S0022-0302(01)74645-0
- Obled C, Papet I, Breuille D. Metabolic bases of amino acid requirements in acute disease. Curr Opin Clin Nutr Metab Care. 2002;5:189-97. https://doi.org/10.1097/00075197-200203000-00012
Cited by
- GC–MS Metabolomics Identifies Metabolite Alterations That Precede Subclinical Mastitis in the Blood of Transition Dairy Cows vol.16, pp.2, 2015, https://doi.org/10.1021/acs.jproteome.6b00538
- Identification of serum metabolites associated with the risk of metritis in transition dairy cows vol.98, pp.3, 2018, https://doi.org/10.1139/cjas-2017-0069
- Plasma metabolomic profiles differ at the time of artificial insemination based on pregnancy outcome, in Bos taurus beef heifers vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-31605-0
- Prospects for predictive modeling of transition cow diseases vol.20, pp.1, 2015, https://doi.org/10.1017/s1466252319000112
- Rumination time around dry-off relative to the development of diseases in early-lactation cows vol.104, pp.5, 2015, https://doi.org/10.3168/jds.2020-19782
- Invited review: The influence of immune activation on transition cow health and performance—A critical evaluation of traditional dogmas vol.104, pp.8, 2015, https://doi.org/10.3168/jds.2021-20330