DOI QR코드

DOI QR Code

Analysis of Changes in Colostrum Proteins by Mammalian Species

포유류의 종에 따른 초유 단백질의 변화에 대한 분석

  • Kim, Seung Hee (Dept. of Animal Life and Environmental Science, Hankyong National University) ;
  • Kim, Woan-Sub (Dept. of Animal Life and Environmental Science, Hankyong National University)
  • 김승희 (한경대학교 동물생명환경과학과) ;
  • 김완섭 (한경대학교 동물생명환경과학과)
  • Received : 2017.05.29
  • Accepted : 2017.06.25
  • Published : 2017.06.30

Abstract

There have been numerous reports indicating that milk proteins influence immune functions. Colostrum refers to the breast milk of mammals, secreted starting from the fourth or fifth day after delivery. It has abundant nutrition for the survival of newborn infants. Most importantly, it contains bioactive substances with growth-stimulating and antibiotic, functions. Thus, the colostrum has various physiological roles. This study measured the differences in the composition of colostrum derived from dairy cattle, hanwoo, porcine, and goat sources. The results showed that immunoglobulin, lactoferrin, lactoperoxidase, serum albumin, IgG heavy chain, and IgG light chain were significantly higher in the colostrum of dairy cattle, hanwoo, and goats, but low in porcine colostrum. There was no significant difference in ${\alpha}_{S2}$-casein, ${\alpha}_{S1}$-casein, ${\beta}$-casein, ${\kappa}$-casein, ${\beta}$-lactoglobulin, and ${\alpha}$-lactalbumin contents until seven days after birth. However, porcine colostrum showed high contents of all proteins from the first day to the second day after delivery.

젖소, 한우, 돼지, 그리고 산양의 초유 중 단백질의 변화를 초일부터 7일까지 조사하였다. 돼지의 초유를 제외한 젖소, 한우, 그리고 산양의 초유에서 면역글로불린, 락토페린, 락토퍼옥시데이스, 혈청 알부민, IgG heavy chain, 그리고 IgG light chain은 분만 후, 초일 함량이 현저히 높았고, 2일째부터 급격히 감소하는 것을 보여 주었다. 그리고 ${\alpha}_{S2}$-카세인, ${\alpha}_{S1}$-카세인, ${\beta}$-카세인, ${\kappa}$-카세인, ${\beta}$-락토글로불린 및 ${\alpha}$-락트알부민은 분만 직후부터 7일까지 현저한 함량의 차이는 나타나지 않았다. 한편, 돼지 초유의 경우는 모든 단백질이 분만 후, 초일부터 2일까지 높은 함량을 나타내었다.

Keywords

References

  1. Bosselaers, I. E., Caessens, P. W., Van-Boekel, M. A. and Alink, G. M. 1994. Differential effects of milk proteins, BSA and soy protein on 4NQO- or MNNGinduced SCEs in V79 cells. Food Chem. Toxic. 32: 905-909. https://doi.org/10.1016/0278-6915(94)90088-4
  2. Carlsson, J., Iwami, Y. and Yamada, T. 1983. Hydrogen peroxide excretion by oral Streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide. Infect. Immun. 40:70-80.
  3. Fiorotto, M. L., Davis, T. A., Reeds, P. J. and Burrin, D. G. 2000. Nonnutritive factor in colostrum enhance myofibrillar protein synthesis in the newborn pig. Pediatr. Res. 48:511-517. https://doi.org/10.1203/00006450-200010000-00015
  4. Fraser, D. and Rushen, J. 1992. Colostrum intake by newborn piglets. Can. J. Anim. Sci. 72:1-13. https://doi.org/10.4141/cjas92-001
  5. Hartmann, P. E., Bird, P. H. and Holmes, M. A. 1989. The influence of lactation on piglet survival. In: Barnett, J. L., Hennessy, D. P. (Eds.), Manipulation Pig Production II. Australasian Pig Science Association Publication, Melbourne, pp. 101-134.
  6. Hiss, S., Meyer, T. and Sauerwein, H. 2008. Lactoferrin concentrations in goat milk throughout lactation. Small Rumin. Res. 80:87-90. https://doi.org/10.1016/j.smallrumres.2008.07.027
  7. Hyon, Y. S. and Kim, W. S. 2016. Effect of parity on immune-related proteins components in bovine colostrum. J. Milk Sci. Biotechnol. 34:193-198. https://doi.org/10.22424/jmsb.2016.34.3.193
  8. Korhonen, H. 1998. Colostrum immunoglobulins and the complement system-potential ingredients of functional foods. Bulletin Int. Dairy Federation. 336:36-40.
  9. Kushibiki, S., Hodate, K., Kurisaki, J., Shingu, H., Ueda, Y., Watanabe, A. and Shinoda, M. 2001. Effect of ${\beta}$- lactoglobulin on plasma retiol and triglyceride concentration, and fatty acid composition in calves. J. Dairy Res. 68:579-586.
  10. Lammli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0
  11. Larson, B. 1992. In advanced dairy chemistry-1. Proteins, P. F. Fpx ed. Elsevier Applied Science, London, pp. 231-254.
  12. Larson, L. L., Owen, F. G., Albright, J. L., Appleman, R. D., Lamb, R. C. and Muller, L. D. 1997. Guidelines toward more uniformity in measuring and reporting calf experimental data. J. Dairy Sci. 60:989-1003.
  13. Leece J. G. 1973. Effect of dietary regimen on cessation of uptake of macromolecules by piglet intestinal epithelium (closure) and transport to the blood. J. Nutr. 103:751-756. https://doi.org/10.1093/jn/103.5.751
  14. Levieux, D., Morgan, F., Geneix, N., Masle, I. and Bouvier, F. 2002. Caprine immunoglobulin G, beta-lactoglobulin, alpha-lactalbumin and serum albumin in colostrum and milk during the early post partum period. J. Dairy Res. 69:391-399.
  15. Lodinova-Zadnikova, R., Korych, B. and Bartakova, Z. 1987. Treatment of gastrointestinal infections in infants by oral administration of colostral antibodies. Nahrung. 31:465-467. https://doi.org/10.1002/food.19870310537
  16. Markus, C. R., Jonkman, L. M., Lammers, J. H., Deutz, N. E., Messer, M. H. and Rigtering, N. 2005. Evening intake of alpha-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention. Am. J. Clin. Nutr. 81: 1026-1033. https://doi.org/10.1093/ajcn/81.5.1026
  17. Matsumoto, H., Shimokawa, Y., Ushida, Y., Toida, T. and Hayasawa, H. 2001. New biological function of bovine alpha-lactalbumin: protective effect against ethanol- and stress- induced gastric mucosal injury in rat. Biosci. Biotechnol. Biochnol. 65:1104-1111. https://doi.org/10.1271/bbb.65.1104
  18. Michaelidou, A. M. 2008. Factors influencing nutritional and health profile of milk and milk products. Small Ruminant Res. 79:42-50. https://doi.org/10.1016/j.smallrumres.2008.07.007
  19. Michaelidou, A. M. and Steijns, J. 2006. Nutritional and technological aspects of minor bioactive components in milk and whey: Growth factors, vitamins and nucleotides. Inter. Dairy J. 16:1421-1426. https://doi.org/10.1016/j.idairyj.2006.06.018
  20. Otani, H. 1998. Production and utilization of bovine milk immunoglobulins specific to pathogenic microorganisms. Milk Sci. 47:63-75.
  21. Otani, H. and Fukutani, M. 1994. Effects of bovine milk preteins on the phagocytic property and formation of nitrite by mouse peritoneal macrophages. Anim. Sci. Technol. 65:423-431.
  22. Otani, H. and Mizumoto, G. 1998. Suppressive effect of lysozymes and ${\alpha}$-lactalbumin on mitogen-induced proliferative responses of mouse lymphocytes. Anim. Sci. Technol. 69:1029-1039.
  23. Polzin, H. W., Otterby, D. E. and Johnson, D. G. 1975. Responses of calves fed fermented or acidified colostrums. J. Dairy Sci. 58:224-234.
  24. Purup, S., Vestergaard, M., Pedersen, L. O. and Sejrsen, K. 2007. Biological activity of bovine milk on proliferation of human intestinal cells. J. Dairy Res. 74:58-65. https://doi.org/10.1017/S0022029906002093
  25. Reiter, B. 1985. Composition and physiological properties of human milk. Schaub. J. ed. Elsevier Science Publishers, Amsterdam, pp. 271-284.
  26. Regester, G. O. and Belford, D. A. 1999. New therapeutics from a dairy by product - Cheese whey. Drug Develop. Res. 46:286-291. https://doi.org/10.1002/(SICI)1098-2299(199903/04)46:3/4<286::AID-DDR14>3.0.CO;2-6
  27. Sangild, P. T. 2003. Uptake of colostral immunoglobulins by the compromised newborn farm animal. Acta Vet. Scand. Suppl. 98:105-122.
  28. Selvaggi, M., Laudadio, V., Dario, C. and Tufarelli, V. 2014. Major proteins in goat milk: An updated overview on genetic variability. Mol. Biol. Rep. 41:1035-1048. https://doi.org/10.1007/s11033-013-2949-9
  29. Shimazaki, K. 2000. Lactoferrin: A marvelous protein in milk. Anim. Sci. J. 71:329-347.
  30. Simmen, F. A., Cera, K. R. and Mahan, D. C. 1990. Stimulation by colostrum or mature milk of gastrointestinal tissue development in newborn pigs. J. Anim. Sci. 68:3596-3603. https://doi.org/10.2527/1990.68113596x
  31. Stelwagen, K., Carpenter, E., Haigh, B., Hodgkinson, A. and Wheeler, T. T. 2009. Immune components of bovine colostrum and milk. J. Anim. Sci. 87:3-9. https://doi.org/10.2527/jas.2008-1377
  32. Stephan, W., Dichtelmüller, H. and Lissner, R. 1990. Antibodies from colostrums in oral immunotherapy. J. Clin. Chem. Clin. Biochem. 28:19-23.
  33. Tuo, W., Zhu, D. and Bazer, F. W. 1996. Transfer of heterologous immunoglobulin into the uterine lumen of pigs. J. Reprod. Immunol. 32:145-155. https://doi.org/10.1016/S0165-0378(96)00993-X
  34. Ushida, Y., Shimokawa, Y., Matsumoto, H., Toida, T. and Hayasawa, H. 2003. Effect of bovine ${\alpha}$-altalbumin on gastric defense mechanisms in native rats. Biosci. Biotechnol. Biochem. 67:577-583. https://doi.org/10.1271/bbb.67.577
  35. Xu, M., Sugiura, Y., Nagaoka, S. and Kanamaru, Y. 2005. IEC-6 intestinal cell death induced by bovine milk ${\alpha}$-lactalbumin. Biosci. Biotechnol. Biochem. 69: 1082-1089. https://doi.org/10.1271/bbb.69.1082
  36. Xu, M., Sugiura, Y., Nagaoka, S. and Kanamaru, Y. 2005. Involvement of SDS-stable higher Mr forms of bovine normal milk ${\alpha}$-lactalbumin in inducing intestinal IEC-6 cell death. Biosci. Biotechnol. Biochem. 69:1189-1192. https://doi.org/10.1271/bbb.69.1189

Cited by

  1. Evaluation of Immunoglobulin G Absorption from Goat Colostrum by Newborn Piglets vol.10, pp.4, 2017, https://doi.org/10.3390/ani10040637