• Title/Summary/Keyword: microwave-assisted extraction

Search Result 61, Processing Time 0.038 seconds

Optimization of Microwave-Assisted Pretreatment Conditions for Enzyme-free Hydrolysis of Lipid Extracted Microalgae (탈지미세조류의 무효소 당화를 위한 마이크로파 전처리 조건 최적화)

  • Jung, Hyun jin;Min, Bora;Kim, Seung Ki;Jo, Jae min;Kim, Jin Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.229-239
    • /
    • 2018
  • The purpose of this study was to effectively produce the biosugar from cell wall of lipid extracted microalgae (LEA) by using microwave-assisted pretreatment without enzymatic hydrolysis process. Response surface methodology (RSM) was applied to optimization of microwave-assisted pretreatment conditions for the production of biosugar based on enzyme-free process from LEA. Microwave power (198~702 W), extraction time (39~241 sec), and sulfuric acid (0~1.0 mol) were used as independent variables for central composite design (CCD) in order to predict optimum pretreatment conditions. It was noted that the pretreatment variables that affect the production of glucose (C6) and xylose (C5) significantly have been identified as the microwave power and extraction time. Additionally, the increase in microwave power and time had led to an increase in biosugar production. The superimposed contour plot for maximizing dependent variables showed the maximum C6 (hexose) and C5 (pentose) yields of 92.7 and 74.5% were estimated by the predicted model under pretreatment condition of 700 w, 185.7 sec, and 0.48 mol, and the yields of C6 and C5 were confirmed as 94.2 and 71.8% by experimental validation, respectively. This study showed that microwave-assisted pretreatment under low temperature below $100^{\circ}C$ with short pretreatment time was verified to be an effective enzyme free pretreatment process for the production of biosugar from LEA compared to conventional pretreatment methods.

Establishment of Extraction Conditions for Effective Components from Angelica gigas Nakai Using Microwave-Assisted Process (마이크로웨이브 공정을 이용한 당귀 유용성분의 추출조건 설정)

  • 이선영;신승렬;김광수;권중호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.3
    • /
    • pp.442-447
    • /
    • 2000
  • 당귀 유용성분의 신속한 추출방법을 개발하기 위한 기초연구로써, 기존 추출방법들에 비하여 환경친화적이고 경제적인 장점이 알려진 마이크로웨이브의 추출조건을 검토하였다. 가용성 당귀성분의 MAP추출에서 당귀의 입자 크기는 60 mesh, 시료와 용매의 비는 1:10(g/mL) 이 적당하였고, microwave power는 80 W에서 당귀성분의 추출효율이 높았다. 가용성 고형분과 decursin 함량을 동시에 가장 많이 추출할 수 있는 50% 에탄올을 용매로 하였을 경우 5분간 3회 반복 추출로써 decursin을 포함한 대부분의 가용성 성분을 추출할 수 있었다.

  • PDF

Extraction Characteristics and Browning Inhibitory Effects of Fresh Garlic by Microwave-assisted Extraction (마늘의 마이크로웨이브 추출 특성과 갈변억제 효과)

  • Kang, Deog-Sun;Jeong, Seong-Weon;Kwon, Joong-Ho;Kim, Hyun-Ku
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.291-297
    • /
    • 2000
  • Oleoresin was extracted from fresh garlic by microwave-assisted extraction (MAE) and its functionality and antibrowning effect were investigated at various extraction conditions. The yield and polyphenol contents of the garlic oleoresin were inversely related to extraction time. The highest yield was l2.9% and maximum polyphenol contents was 574.3 mg% when the oleoresin was extracted for 5 min with ethanol. Apparently, the electron donating abilities of garlic oleoresin increased with extraction time, but there were no significant differences among extraction time intervals. The highest nitrite scavenging effect was found at pH 1.2 and decreased as pH increased. Tyrosinase inhibitory effect was less than 30% for most garlic oleoresin but the 15 minute extraction with ethanol resulted in higher inhibitory effect. Angiotensin I-converting enzyme (ACE) inhibitory effect was highest (89.2%) when oleoresin extracted with ethanol for 20 min. The addition of cysteine, ascorbic acid and citric acid to oleoresin extracts retarded browning action of garlic oleoresin during 10 day storage. 0.1 % cysteine retarded browning reaction and some synergistic effect was found in the combination of citric acid and ascorbic acid.

  • PDF

Optimization of Microwave-Assisted Process for Extraction of Effective Components from Mosla dinthera M. (마이크로파 추출공정에 의한 쥐깨풀 유용성분의 추출조건 최적화)

  • Lee Eun-Jin;Kwon Young-Ju;Noh Jung-Eun;Lee Jeong-Eun;Lee Sung-Ho;Kim Jae-Keun;Kim Kwang-Soo;Choi Yong-Hee;Kwon Joong-Ho
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.617-623
    • /
    • 2005
  • Response surface methodology (RSM) was applied to microwave-assisted process (MAP) extraction for effective components from Mosla dianthera M. Microwave power (2,450 MHz, 0-160 W) and extraction time (1-5 min) were used as independent variables ($X_i$) for central composite design to yield 10 different extraction conditions. Optimum conditions were predicted for dependent variables of $75\%$ ethanol extracts, such as total yield($Y_1$), total phenolics($Y_2$), total flavonoids($Y_3$), and electron donation ability($Y_4$, EDA). Determination coefficients ($R^2$) of regression equations for dependent variables ranged from 0.8397 to 0.9801, and microwave power was observed to be more influential than extraction time in MAP. The maximal values of each dependent variable predicted at different extraction conditions of microwave power (W) and extraction time (min) were as follows; $6.76\%$ of total yield at 142.00 W and 4.36 min, 78.68 mg/g of total phenolics at 136.78 W and 4.40 min, 6.75 mg/g of total flavonoids at 159,69 W and 3.17 min, and $49.81\%$ of EDA at 133.87 W and 4.47 min, respectively. The superimposed contour maps for maximizing dependent variables illustrated the MAP conditions of 79 to 113 W in power and of 2.73 to 3.84 min in extraction time.

Optimization of microwave-assisted extraction process of Hordeum vulgare L. by response surface methodology (반응표면분석법을 이용한 새싹보리 마이크로웨이브 추출공정의 최적화)

  • Lee, Jae-Jun;Park, Dae-Hee;Lee, Won-Young
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.949-956
    • /
    • 2017
  • This study attempted to find optimum extract range of active ingredient for barley sprouts (Hordeum vulgare L.). Extracts from Hordeum vulgare L. were made by microwave extraction method and total polyphenol content (TPC), total flavonoid content (TFC), DPPH radical scavenging activity (DPPH) were measured with extract of Hordeum vulgare L.. Response surface methodology (RSM) was applied to a extraction process, and central composite design (CCD) was also used for this process to examine the optimum condition. Independent variables ($X_n$) are concentration of ethanol ($X_1$: 0, 25, 50, 75, 100%), microwave power ($X_2$: 60, 120, 180, 240, 300 W), extraction time ($X_3$: 4, 8, 12, 16, 20 min). Dependent variables ($Y_n$) are TPC ($Y_1$), TFC ($Y_2$), DPPH radical scavenging ($Y_3$). It is formed by sixteen conditions to extract. The $R^2$ value of dependent variables is ranged from 0.90 to 0.97 (p<0.05). Experiments values within the optimal range (40% of ethanol concentration, 120 W of microwave power, 18 min of extraction time) were 3.74 mg GAE/g (TPC), 3.00 mg RE/g (TFC), 35.43% (DPPH), respectively. Under the optimized conditions, predicted value showed no significant difference comparing with the experimental values.

Optimization of Extraction Conditions for Functional Components of Roasted Pleurotus eryngii by Microwave-Assisted Extraction (볶음 새송이버섯 기능성분의 마이크로웨이브 추출조건 최적화)

  • Lee, Myung-Hee;Yoon, Sung-Ran;Jo, Deok-Jo;Kim, Hyun-Ku;Lee, Gee-Dong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.8
    • /
    • pp.1062-1069
    • /
    • 2007
  • Response surface methodology was employed to optimize extraction conditions for finding the maximizing the functional properties of roasted Pleurotus eryngii. Based on the central composite design, independent variables were ethanol concentration ($0{\sim}100%$), extraction time ($1{\sim}9$ min) and microwave power ($25{\sim}125$ W). Soluble solid content, electron donating ability and nitrite-scavenging ability were mainly affected by ethanol concentration, but ACE inhibition activity was largely affected by extraction time. The optimum ranges of extraction conditions resulting from superimposing the response surface were predicted to be ethanol concentration ($25{\sim}50%$), extraction time ($3{\sim}9$ min) and microwave power ($80{\sim}125$ W). Total protein and total phenolic compound content of optimal extracts were 45.80 mg/g and 7.42 mg/g, respectively. In phenolic compounds of roasted Pleurotus eryngii extracts, protocatechuic acid was the highest concentration at 1226.32 ${\mu}g/g$, followed by salicylic acid, catechin, p-hydroxybenzoic acid, caffeic acid, coumaric acid and hesperidin.

Antioxidant Activities in Freeze-dried and Hot Air-dried Schizandra Fruit (Schizandra chinensis Baillon) at Different Microwave-asssisted Extraction Conditions (마이크로웨이브 추출조건에 따른 동결 및 열풍 건조 오미자 추출물의 항산화 특성)

  • Park, Eun-Joo;Ahn, Jae-Jun;Kim, Jeong-Sook;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.667-674
    • /
    • 2013
  • This study was aimed to investigate the effect of microwave-assisted extraction on Schizandra fruit extract dried by two different treatments: freeze-drying and hot air-drying. Two extraction parameters were measured in particular: total polyphenol content and antioxidant activity. Both values were found to increase as the microwave power increased, for both drying processes. However, the extract from the freeze-dried sample exhibited higher antioxidant activity than that from the hot air-dried samples. Additionally, the total polyphenol content and antioxidant activity of the extract from the freeze-dried samples increased with the extraction time, whereas they decreased with the extraction time in the case of the hot air-dried sample. Solvent concentration was also found to have a significant effect on total polyphenol content and antioxidant activity; the highest values for both properties were achieved at 50 and 70% ethanol concentrations, respectively. In summary, a higher total polyphenol content and antioxidant activity were observed for Schizandra fruit extracted by freeze-drying than that by hot air-drying.

Optimization of microwave-assisted extraction process for blue honeysuckle (Lonicera coerulea L.) using response surface methodology (반응표면분석법을 이용한 댕댕이 기능성성분의 마이크로웨이브추출조건 최적화)

  • Park, Daehee;Lee, Jae-Jun;Park, Jongjin;Park, Sanghwan;Lee, Wonyoung
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.623-630
    • /
    • 2017
  • Functional compounds including flavonoids, anthocyanins, polyphneols and antioxidants were extracted from blue honeysuckle (Lonicera caerulea L.) using highly efficient microwave-assisted extraction. And extraction process was modeled and optimized according to response surface methodology (RSM). The independent variables ($X_n$) were ethanol concentration ($X_1$: 0, 25, 50, 75, 100%), irradiation time ($X_2$: 1, 3, 5, 7, 9 min), and microwave power ($X_3$: 60, 120, 180, 240, 300 W). Dependent variables ($Y_n$) were total flavonoid contents ($Y_1$), total anthocyanin contents ($Y_2$), total polyphenol contents ($Y_3$) and antioxidant activity ($Y_4$). Four-dimensional response surface plots were generated based on the fitted second-order polynomial models to get optimal conditions. Estimated optimal conditions for 4 responses were ethanol concentration of 54-72%, irradiation time of 7.1-7.6 min, and microwave power of 243-251 W. Ridge analysis predicted the maximal responses of total flavonoid content, total anthocyanin content, total polyphenol content and antioxidant activity were 38.00 mg RE/g, 6.80 mg CGE/g, 14.90 mg GAE/g, 89.10%, respectively. Verification experiment was carried out at predicted optimal conditions and experimental values for total flavonoid content, total anthocyanin content, total polyphenol content and antioxidant activity were 38.10 mg RE/g, 6.72 mg CGE/g, 14.91 mg GAE/g and 89.13%, respectively. No significant difference was observed between predicted and experimental values, indicating good fitness of fitted model and successful application of RSM.

Clean and Efficient Synthesis of Furfural From Xylose by Microwave-Assisted Biphasic System using Bio-Based Heterogeneous Acid Catalysts

  • Vo, Anh Thi Hoang;Lee, Hong-shik;Kim, Sangyong;Cho, Jin Ku
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.250-257
    • /
    • 2016
  • As an attempt to replacing petroleum-based chemicals with bio-based ones, synthesis of furfural from biomass-derived xylose attracts much attention in recent days. Conventionally, furfural from xylose has been produced via the utilization of highly corrosive, toxic, and environmentally unfriendly mineral acids such as sulfuric acid or hydrochloric acid. In this study, microwave-assisted biphasic reaction process in the presence of novel bio-based heterogeneous acid catalysts was developed for the eco-benign and effective synthesis of furfural from xylose. The microwave was irradiated for reaction acceleration and a biphasic system consisting of $H_2O$ : MIBK (1 : 2) was designed for continuous extraction of furfural into the organic phase in order to reduce the undesired side products formed by decomposition/condensation/oligomerization in the acidic aqueous phase. Moreover, sulfonated amorphous carbonaceous materials were prepared from wood powder, the most abundant lignocellulosic biomass. The prepared catalysts were characterized by FT-IR, XPS, BET, elemental analysis and they were used as bio-based heterogeneous acid catalysts for the dehydration of xylose into furfural more effectively. For further optimization, the effect of temperature, reaction time, water/organic solvent ratio, and substrate/catalyst ratio on the xylose conversion and furfural yield were investigated and 100% conversion of xylose and 74% yield of furfural was achieved within 5 h at $180^{\circ}C$. The bio-based heterogeneous acid catalysts could be used three times without any significant loss of activity. This greener protocol provides highly selective conversion of xylose to furfural as well as facile isolation of product and bio-based heterogeneous acid catalysts can alternate the environmentally-burdened mineral acids.

A Study on the Total Mercury (Hg) Monitoring and Methylmercury (MeHg) Analysis method and Exposure Assessment of Methylmercury (MeHg) in Marine Products (수산물 중 총수은 모니터링 및 메틸수은 분석법 고찰)

  • Kwak, Shin-Hye;Kim, Ki-Cheol;Kim, Kyung-A;Kang, Suk-Ho;Kwon, Hye-Jung;Cho, Yun-Sik;Kang, Kyung-Ja;Lee, Pil-Suk;Cho, Wook-Hyun;Moh, Ara;Park, Yong-Bae;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.168-175
    • /
    • 2018
  • The use of microwave-assisted extraction and an acid-base clean-up process to determine the amount of methylmercury (MeHg) in marine products was suggested in order to improve the complicated sample preparation process. The optimal conditions for microwave-assisted extraction was developed by using a 10% NaCl solution as an extraction solution, setting the extraction temperature at $50^{\circ}C$, and holding for 15 minutes to extract the MeHg in marine products. A NaOH solution was selected as a clean-up substitute instead of L-cysteine solution. Overall, 670 samples of marine products were analyzed for total mercury (Hg). Detection levels were in the range of $0.0006{\sim}0.3801{\mu}g/kg$. MeHg was analyzed and compared using the current food code and the proposed method for 49 samples which contained above 0.1 mg/kg of Hg. Detection ranges of methylmercury followed by the Korea Food Code and the proposed method were $75.25(ND{\sim}516.93){\mu}g/kg$ and $142.07(100.14{\sim}244.55){\mu}g/kg$, respectively. The total analytical time of proposed method was reduced by more than 25% compared with the current food code method.