• Title/Summary/Keyword: microwave studio

Search Result 73, Processing Time 0.027 seconds

Design of Dual-band Microstrip Array Antenna for WLAN/WiFi (WLAN/WiFi용 이중대역 마이크로스트립 배열 안테나 설계)

  • Kim, Kab-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.27-30
    • /
    • 2016
  • in this paper, to improve the narrow bandwidth problem of the microstrip antenna for WLAN and WiFi dual band array antenna was designed to satisfy the bandwidth of 3.6GHz and 5.2GHz it contained with IEEE 802. 11. The substrate of proposed microstrip array antenna is FR-4(er=4.3) and $25mm{\times}45mm{\times}0.8mm$ size and thickness t=0.035mm, and the simulation was used for CST Microwave Studio 2014. input return loss compared -10dB less than operates at and when gain 3.6GHz 2.516dB, 5.2GHz showed the results of 3.581dB. the antenna designed to be miniaturized and the be used in electronic devices such as mobile phone.

Design and Implementation of a Internal Mobile Antenna for TDMB and KPCS (TDMB와 KPCS 대역을 지원하는 내장형 휴대폰 안테나의 설계 및 구현)

  • Park, Jun-Han;Lee, Chi-Woo;Yang, Myo-Geun;Seong, Won-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.161-166
    • /
    • 2009
  • In this paper, we propose the internal mobile antenna for TDMB and KPCS. The proposed antenna is made of different dielectric substrate and it has small size ($45{\times}8{\times}8\;mm$, about 2.8 cc) for mobile device. TDMB antenna is designed spiral structure that makes maximum current for each cell and KPCS antenna is PIFA that is usually used for internal antenna. In order to compensate length of resonance TDMB antenna has a large inductor above 100 nH. In this case, the inductor isolate KPCS signal at TDMB by cutting high frequency. Also the antenna has good isolation because TDMB radiator is parasitic element in KPCS band. We simulated the antenna by using CST microwave studio and measured performance of the antenna in anechoic chamber Proposed antenna has $-6{\sim}-14\;dBi$ gain for TDMB and $-3.5{\sim}-5\;dBi$ gain for KPCS.

Design of Dual-Band Microstrip Antenna for Marine Telecommunication (해상 무선통신을 위한 이중대역 마이크로 스트립 안테나 설계)

  • Choi, Jo-Cheon;Lee, Gwang-Bok;Kim, Kab-Ki;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1314-1317
    • /
    • 2014
  • In this letter, we designed monopole microstrip antenna for WLAN / WiMAX system. The monopole antenna is designed by FR-4 substrate with size is $30mm{\times}40mm$. The proposed antenna is based on a planar monopole design which cover WLAN and WiMAX frequency bands. To obtainthe optimized parameters, we used the simulator, CST's Microwave Studio Program and found the parameters that greatly effect antenna characteristics. Using the obtained parameters, the antenna is designed. Thus the proposed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. And characteristics of gain and radiation patterns are obtained for WLAN/WiMAX frequency bands.

Design of Dual Band Antenna for Broadband Wireless LAN (광대역 무선랜용 이중대역 안테나 설계)

  • Kim, Kab-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.181-185
    • /
    • 2017
  • In this paper, for Broadband Wireles LAN dual-band antenna was designed to satisfy the bandwidth of 2.32GHz and 5.79GHz. the substrate of proposed microstrip antenna is FR-4(er=4.3) and $34mm{\times}50mm{\times}1.5mm$ size and thickness t=0.035mm, and the simulation was used for CST Microwave Studio 2014. input return loss compared -10dB less than operates at and when gain 2.32GHz -19.321dB, 5.79GHz showed the results of -13.033dB. It increased impedance matching, minimized interference between adjacent frequencies, simplified small manufacturing methods, and demonstrated the characteristics of non-directional properties. Thus the proposed antenna satisfied the -10 dB impedancebandwidth requirement while simultaneously covering the Broadband Wireless LAN.

UHF Cavity-backed Spiral Antenna for Partial Discharge Diagnosis (부분방전 진단용 UHF cavity-backed 스파이럴 안테나)

  • Kim, Han Byul;Kim, Jin Hyuk;Hwang, Keum Cheol;Shin, Jae Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.89-94
    • /
    • 2012
  • In this paper, a UHF cavity-backed spiral antenna for partial discharge diagnosis is proposed. The proposed antenna consists of two-arm Archimedean spiral, a cavity, and a balun for feeding. The spiral antenna is designed for 0.3-1.5 GHz operating frequency. Two spiral arms of the proposed antenna are fed by a microstrip tapered-balun. In order to enhance the gain, the cavity is located in the back side of the spiral pattern. The proposed antenna is designed and simulated using CST Microwave Studio. The designed antenna is also fabricated and tested to validate performance. The measured radiation patterns are directional to the +z-axis and measured peak gain is 9.92 dBi.

Design and Fabrication of the H-Type Slot Antenna with Bazooka Balun for a WiBro Repeater (WiBro 중계기용 Bazooka 발룬이 내장된 H형 슬롯 안테나의 설계 및 제작)

  • Choi, Won-Jun;Kim, Che-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.515-522
    • /
    • 2008
  • In this paper, a slot antenna with built-in Bazooka balun aimed for a WiBro repeater was designed and fabricated. The return loss and radiation pattern of the slot antenna were improved due to the introduced Bazooka balun. This balun brings about even radiation pattern and keeps the stabilized coverage of repeater And it is easy to unite this balun with the antenna body by providing the terminal of Bazooka balun with screw shape. H-type slot was used to reduce the size of the antenna, and the slot antenna was fabricated in the structural symmetry with respect to a feeding point to afford the omni-directional radiation pattern. The simulated results were obtained by MWS(Microwave Studio Simulator) of CST company, and the measurement on the proposed antenna was conducted in an anechoic chamber equipped with a network analyzer and a far field measurement system. The measured peak gain shows 5.75 dBi and the average gain is above -0.8 dBi. The return loss remains below -12.35 dB for all frequency bands in WiBro regarded as a good performance.

The Design of Miniature Microstrip Fractal Patch Antenna Using L-shaped Feeding Structure. (L-형급전구조를 이용한 소형 마이크로스트립 Fractal 패치 안테나 설계)

  • Park, Chang-Hyun;Yoon, Chi-Mu;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.863-867
    • /
    • 2007
  • In this paper, We have designed miniature microstrip patch antenna based on fractal structure using L-shaped feeding structure for 4G mobile communication applications. Miniature antenna has achieved by the presence of unusual fundamental resonant mode which we call "crossed-diagonal"(CD)current. Using CST Microwave Studio 5.0, patch antenna was designed. The simulated input return loss showed the bandwidth of 1.2647[GHz]($2.944{\sim}4.209GHz$), 35.4% below -10dB. The gain of E, H-plane was achieved 8.3dBi and 8.4dBi respectively. And beamwidth of 3dB in the E, H-plane was $40.6^{\circ}$ and $81.6^{\circ}$, respectively.

  • PDF

The Design of Broadband PIFA for Hand-Held Mobile Phones (이동통신 광대역 PIFA 안테나 설계 및 해석)

  • 김상준;이대헌;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.855-862
    • /
    • 2003
  • This paper suggests the PIFA structure modified antenna in which short-circuit plate is located between planar element and ground plane, in order to solve the problem of narrow band of existing internal antenna, PIFA. It is also suggested that internal antenna has the perturbation in the patch to broaden the frequency bandwidth. It is possible that the antenna is installed into the mobile telephone with a low profile condition(h=0.015 λ) to use internally, and acquired desired bandwidth(5.2 %) through double resonance structure, remodeling the PIFA that is already well-known as an internal antenna. This paper investigated how characteristic is affected by the feeding point(Yf, Zf), short strip plate(Zs), short strip width(Ws), perturbation width(w), length(d), short plate height(h), dielectric($\varepsilon$$\_$r/) to be slim type antenna. It is compared with existing PIFA bandwidth, and is suggested pattern as the H.E plane. It is simulated using the Microwave Studio of the CST Inc. based on FIM(Finite Integration Method) method and analyzed antenna characteristic following the variation each parameters. The result proved the practical use of PIFA antenna by comparing the measured and simulated data of the antenna.

Design of Mobile Handset Chip Antenna with a Backside Ground for Wi-Fi Application (후면 그라운드를 이용한 휴대단말 Wi-Fi 칩 안테나 설계)

  • Oh, Sae-Won;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.592-597
    • /
    • 2012
  • In this paper, a new small chip antenna for Wi-Fi application of the mobile handset is proposed. To miniaturize the chip antenna, the proposed antenna is designed to have the backside ground. The proposed antenna has S-shaped structure, which is designed on the LCP(Liquid Crystal Polymer) with ${\varepsilon}_r$=3.5. The size of the proposed antenna is $6.0mm{\times}2.5mm{\times}1.2mm$. The measured impedance bandwidth under a voltage standing wave ratio (VSWR) of 2 was 300 MHz(fractional bandwidth: 12.2 % 2.3~2.6 GHz), and peak gain is 1.42 dBi. The proposed antenna was designed using CST Microwave Studio commercial software tool. And the fabricated antenna is measured using a network analyzer and in anechoic chamber.

Dual-Band Antenna Design for LTE/Wi-Fi for Maritime Broadband Communication (해상 광대역 통신을 위한 LTE/Wi-Fi용 이중대역 안테나 설계)

  • Oh, Mal-Geun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.665-669
    • /
    • 2018
  • In this paper, we design an antenna for LTE / Wi-Fi communication that operates in 2.65 GHz and 5 GHz band for small-sized broadband communication antenna that can be used in the sea. Microstrip patch antennas were chosen to improve the bandwidth. The slot width, length, and transmission line width were calculated using the theoretical formula for each step. In addition, we designed a microstrip antenna using CST Microwave Studio 2014 program that can design 3D. Simulation results show that the reflection lossis -12.712 dB at 2.65 GHz and -16.583 dB at 5 GHz. The gain was 1.738 dBi at 2.65 GHz and 3.284 dBi at 5 GHz. In this paper, we propose a dual-band antenna for LTE / Wi-Fi, which can be used in maritime environments, which is worse than terrestrial communication, because of differences in communication speed and communication stability compared with those used on land.