• Title/Summary/Keyword: microwave emission

Search Result 158, Processing Time 0.067 seconds

Polarized Infrared Emission from Polycyclic Aromatic Hydrocarbons and Implications

  • Hoang, Thiem
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.81.2-81.2
    • /
    • 2017
  • Polarized mid-infrared emission from polycyclic aromatic hydrocarbons (PAHs) can provide a crucial test of basic physics of alignment of nanoparticles and opens a potential new window into studying magnetic fields. In this talk, I will present a new model of polarized PAH emission that takes into account the effect of PAH alignment with the magnetic field due to resonance paramagnetic relaxation. I will then present our predictions for the polarization level of the strong PAH emission features from the interstellar medium. I will present the first detection of polarization of PAH emission at 11.3micron which is consistent with our theoretical prediction. Finally, I will discuss important implications of this work for tracing magnetic fields via mid-IR PAH features and for constraining the polarization of anomalous microwave emission that is useful for the quest of CMB B-modes.

  • PDF

Upconversion Photoluminescence Properties of PbMoO4:Er3+/Yb3+ Phosphors Synthesized by Microwave Sol-Gel Method

  • Lim, Chang Sung
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.480-486
    • /
    • 2015
  • $Pb_{1-x}MoO_4:Er^{3+}/Yb^{3+}$ phosphors with various doping concentrations of $Er^{3+}$ and $Yb^{3+}$ ($x=Er^{3+}+Yb^{3+}$, $Er^{3+}=0.05$, 0.1, 0.2, and $Yb^{3+}=0.2$, 0.45) are successfully synthesized using a microwave sol-gel method, and the up-conversion photoluminescence properties are investigated. Well-crystallized particles, which are formed after heat treatment at $900^{\circ}C$ for 16 h, exhibit a fine and homogeneous morphology with particle sizes of $2-5{\mu}m$. Under excitation at 980 nm, the $Pb_{0.7}MoO_4:Er_{0.1}Yb_{0.2}$ and $Pb_{0.5}MoO_4:Er_{0.05}Yb_{0.45}$ particles exhibit a strong 525 nm emission band, a weak 550 nm emission band in the green region, and a very weak 655 nm emission band in the red region. The Raman spectra of the doped particles indicate the presence of strong peaks at higher and lower frequencies induced by the disordered structures of $Pb_{1-x}MoO_4$ through the incorporation of the $Er^{3+}$ and $Yb^{3+}$ ions into the crystal lattice, which results in the unit cell shrinkage accompanying the new phase formation of the $MoO_{4-x}$ group.

Luminous phosphor with modified surface composition and microwave treatment for plasma planar back light

  • Ting, Chu-Chi;Cheng, Hao-Ping;Hsieh, Yu-Heng;Sun, Oliver;Chen, San-Yuan;Lin, Chin-Ching;Kuo, Kuan-Ting;Lee, Shu-Ping
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1534-1535
    • /
    • 2005
  • Highly luminescent efficiency phosphors have been successfully produced by surface modification and microwave irradiation treatment. The SEM image and XRD analysis reveal that the surface morphology of the white-light phosphors can be notably modified by microwave irradiation and exhibit with better crystalline property. The VUV PL spectra show that the microwave irradiation treatment can effectively enhance the luminescent efficiency by a factor of 1.5 times for intensity compared to that without microwave treatment. A further improvement in all visible emission can be made by modifying surface composition through MgO coating on the phosphor powder. These results demonstrate that such a simple approach can provide for improving luminescent efficiency of phosphors for the optoelectronic devices.

  • PDF

Temperature Distributions of Inner Microwave for Various Working Conditions (구동조건에 따른 전자레인지 내부 온도 분포)

  • Choi, Yoon-Hwan;Kim, Dong-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.792-797
    • /
    • 2010
  • Microwave oven and household cooker are devices of high voltage producer and high voltage storage batteries respectively for formation of necessary high frequencies at drive. These devices emit much heat energy because they are run at high voltages. Therefore, emitted heat energy becomes a factor that raises temperature of microwave ovens' main frame. In this research, the analysis shows the temperature distribution in microwave oven with the cooling fan drive conditions and the heat energy occurrence conditions. According to the analysis, as the speed of air outpoured in cooling fan increases, and the internal temperature decreases quantitatively. Also the inside temperature distribution was investigated by controlling heat energy emission.

Self Annealing Effects of Arsenic Ion Implanted Amorphous Carbon Films during Microwave Plasma Chemical Vapor Deposition (As 이온 주입된 비정질 탄소 박막의 마이크로플라즈마 화학기상증착법에 의한 자동 어닐링 효과에 관한 연구)

  • Cho, E.S.;Kwon, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • For the simplification of doping process in amorphous carbon film, arsenic (As) ions were implanted on the nucleated silicon wafer before the growth process. Then amorphous carbon films were grown at the condition of $CH_4/H_2=5%$ by microwave plasma chemical vapour deposition. Because the implanted seeds were grown at the high temperature and the implanted ions were spread, it was possible to reduce the process steps by leaving out the annealing process. When the implanted amorphous carbon films were electrically characterized in diode configuration, field emission current of $0.1mA/cm^2$ was obtained at the applied electric field of about $2.5V/{\mu}m$. The results show that the implanted As ions were sufficiently doped by the self-annealing process by using the growth after implantation.

FIELD EMISSION CHARACTERISTICS OF DIAMOND FILMS

  • Park, Kyung-Ho;Lee, Soon-Il;Koh, Ken-Ha;Park, Jung-Il;Park, Kwang-Ja
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.505-511
    • /
    • 1996
  • The field emission characteristics of diamond films deposited by microwave plasma enhanced chemical vapor deposition (MPECVD) method were investigated. Diamond films were deposited on n-type Si(100) wafer using various mixtures of hydrogen and methane gas, and the I-V characteristics are measured. We observed that the field emission characteristics depend on the $CH_4$ concentration and the diamond film thickness. All the films show remarkable emission characteristics; low turn-on voltage, high emission current density at lower voltage, uniform stable current density, and good stability and reproducibility. The threshold field for producing a current density of 1mA/$\textrm{cm}^2$ is found as low as 7.6V/$\mu\textrm{m}$.

  • PDF

Luminescence characterization of $YVO_4$: $Eu^{3+}$, $Bi^{3+}$ red phosphor by rapid microwave heating synthesis (급속 microwave 열처리 방법으로 합성한 $YVO_4$: $Eu^{3+}$, $Bi^{3+}$ 적색 형광체의 발광 특성)

  • Park, W.J.;Song, Y.H.;Moon, J.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.169-173
    • /
    • 2008
  • $Eu^{3+}$ and $Bi^{3+}$ co-doped $YVO_4$ phosphors were produced by a microwave heating process. When the microwave heating method was synthesized,. the particle size was very small and the particles tended to agglomerate. However, as the heating time increased, the particle size increased and the agglomeration decreased. The emission spectrum exhibited a weak band for $^5D_0{\longrightarrow}^7F_1$ at 594.91 and 602.3 nm and strong sharp peaks at 616.7 and 620.0 nm due to the $^5D_0{\longrightarrow}^7F_2$ transition of $Eu^{3+}$. Microwave heating synthesis can provide a product without long time heating as well as good homogeneous distribution of activators.

Development of a Microwave Radiometer for Remote Sensing of Water Surface Temperature (수면 온도 원격탐사용 마이크로파 라디오미터의 개발)

  • Son, Hong-Min;Youn, Jeong-Beam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1107-1115
    • /
    • 2012
  • This paper presents the development processes of a microwave radiometer for remote sensing of water surface temperature. Achieving the measurement accuracy within $2^{\circ}C$ for water surface temperature of $5{\sim}30^{\circ}C$, the requirements and specifications of the microwave radiometer and its receiver are drawn. The receiver with high gain, high sensitivity is designed and implemented. The receiver has the bandwidth of 50 MHz, the system gain of 45.2 dB and the sensitivity of 0.56K at 5.02 GHz. The effectiveness of the developed microwave radiometer in the measurement of water surface temperature is demonstrated experimentally. The results show the microwave radiometer can detect water surface temperature for $7.5{\sim}18^{\circ}C$ within the accuracy of $0.45^{\circ}C$.

Electron Density and Electron Temperature in Atmospheric Pressure Microplasma

  • Tran, T.H.;Kim, J.H.;Seong, D.J.;Jeong, J.R.;You, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.152-152
    • /
    • 2012
  • In this work we measured electron temperature and electron density of a microplasma by optical emission spectroscopy. The plasma is generated from a small discharge gap of a microwave parallel stripline resonator (MPSR) in Helium at atmospheric pressure. The microwave power supplied for this plasma source from 0.5 to 5 watts at a frequency close to 800 MHz. The electron temperature and electron density were estimated through Collisional-radiative model combined with Corona-equilibrium model. The results show that the electron density and temperature of this plasma in the case small discharge gap width are higher than that in larger gap width. The diagnostic techniques and associated challenges will be presented and discussed.

  • PDF

SIMULATION OF COSMIC MICROWAVE BACKGROUND POLARIZATION FIELDS FOR AMiBA EXPERIMENT

  • PARK CHAN-GYUNG;PARK CHANGBOM
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.67-73
    • /
    • 2002
  • We have made a topological study of cosmic microwave background (CMB) polarization maps by simulating the AMiBA experiment results. A ACDM CMB sky is adopted to make mock interferometric observations designed for the AMiBA experiment. CMB polarization fields are reconstructed from the AMiBA mock visibility data using the maximum entropy method. We have also considered effects of Galactic foregrounds on the CMB polarization fields. The genus statistic is calculated from the simulated Q and U polarization maps, where Q and U are Stokes parameters. Our study shows that the Galactic foreground emission, even at low Galactic latitude, is expected to have small effects on the CMB polarization field. Increasing survey area and integration time is essential to detect non-Gaussian signals of cosmological origin through genus measurement.