Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.1.31

Self Annealing Effects of Arsenic Ion Implanted Amorphous Carbon Films during Microwave Plasma Chemical Vapor Deposition  

Cho, E.S. (Department of Electronics, Gachon University)
Kwon, S.J. (Department of Electronics, Gachon University)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.1, 2013 , pp. 31-36 More about this Journal
Abstract
For the simplification of doping process in amorphous carbon film, arsenic (As) ions were implanted on the nucleated silicon wafer before the growth process. Then amorphous carbon films were grown at the condition of $CH_4/H_2=5%$ by microwave plasma chemical vapour deposition. Because the implanted seeds were grown at the high temperature and the implanted ions were spread, it was possible to reduce the process steps by leaving out the annealing process. When the implanted amorphous carbon films were electrically characterized in diode configuration, field emission current of $0.1mA/cm^2$ was obtained at the applied electric field of about $2.5V/{\mu}m$. The results show that the implanted As ions were sufficiently doped by the self-annealing process by using the growth after implantation.
Keywords
Arsenic implantation; Amorphous carbon film; Microwave plasma chemical vapour deposition; Field emission; Self-annealing;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 H. M. W. Khalil, O. Kelekci, H. Noh, and Y. H. Xie, J. Korean Vac. Soc. 21, 279 (2012).   DOI   ScienceOn
2 S. W. Jang, W. Song, Y. Kim, S. H. Kim, S. Park, and C.-Y. Park, J. Korean Vac. Soc. 21, 113 (2012).   DOI   ScienceOn
3 T. Kim, W. Song, Y. Kim, S. Kim, W. Choi, and J. Park, J. Korean Vac. Soc. 19, 377 (2010).   DOI   ScienceOn
4 H. S. Uh, S. Park, and B. Kim, J. Korean Vac. Soc. 20, 436 (2011).   DOI   ScienceOn
5 N. Schauer, J. R. Flemish, R. Wittstruck, M. I. Landstrass, and M. A. Plano, Appl. Phys. Lett. 15, 366 (1996).
6 G. Z. Cao, F. A. J. Driessen, G. J. Bauhuis, and L. J. Giling, J. Appl. Phys. 78, 3125 (1995).   DOI   ScienceOn
7 C. Kimura, S. Koizumi, M. Kamo, and T. Sugino, J. Vac. Sci. Technol. B 18, 1024 (2000).   DOI   ScienceOn
8 H. Hofass, M. Dalmer, M. Restle, and C. Ronning, J. Appl. Phys. 81, 2566 (1997).   DOI   ScienceOn
9 L. S. Pan and D. R. Kania, Diamond: Electronic properties and applications (Kluwer Academic Publishers, Boston, 1995).
10 S. A. Kajihara, A. Antonelli, J. Bernholc, and R. Car, Phys. Rev. Lett. 16, 2010 (1991).
11 H. Maeda, S. Ikari, T. Okubo, K, Kusakabe, and S. Morooka, J. Mater. Res. 28, 129 (1993).
12 C.-P. Chang, D. L. Flamm, D. E. Ibbotson, and J. A. Mucha, J. Appl. Phys. 63, 1744 (1988).   DOI
13 M. W. Geis, J. C. Twichell, and T. M. Lyszczarz, J. Vac. Sci. Technol. B 14, 2060 (1996).   DOI   ScienceOn
14 T. Sugino, Y. Iwasaki, S. Kawasaki, R. Hattori, and J. Shirafuji, Diamond Relat. Mater. 6, 889 (1997).   DOI   ScienceOn
15 I. H. Shin and T. D. Lee, J. Vac. Sci. Technol. B 18, 1027 (2000).   DOI   ScienceOn