• Title/Summary/Keyword: microwave digestion method

Search Result 66, Processing Time 0.028 seconds

Applicability of CCT-ICP-MS for the Determination of Trace Elements in Airborne Particulate Matters (CCT-ICP-MS의 대기분진내 미량원소분석에 대한 적용성)

  • 임종명;이진홍;서만철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.397-409
    • /
    • 2004
  • There has been few studies of either domestic or international to apply CCT-ICP-MS for the precise analysis of As and Cr components associated with airborne particulate matter. To date, the use of CCT-ICP-MS is strongly recommended for the accurate analysis of the toxic trace metals; this is because CCT-ICP-MS technique prevents polyatomic spectral interferences involved in the determination of As and/or Cr components. Taking advantage of CCT-ICP-MS technique, the measurements of about 20 metals were undertaken in this study. The standard reference material (NIST SRM 2783) was used for analytical quality control. To improve analytical accuracy and of acid efficiency, we selected nitric acid based on a test of three kinds of acid for microwave digestion method 1 ) nitric acid. 2) nitric acid and hydrogen peroxide. and 3) nitric acid and perchloric acid. When this method was employed, relative errors to SRM values of Al, As, Cr Fe, Mg, Mn, Pb, Sb, V, and Zn fell below 20%, while those or Ca, Si, and Ti were higher than 20%. The overall results of our study show that the concentrations of As and V determined by CCT-ICP-MS were satisfied with the certificated values within a relative error of 20e1c, whereas those determined by ICP-MS were 10 times higher than the certificated values.

Sensory Characteristics of Rice Cooked with Pressure Cookers and Electric Cookers (압력솥및 전기솥 취반미의 관능적 특성)

  • Kim, Hye-Young;Kim, Kwang-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.319-324
    • /
    • 1986
  • The characteristics of cooked rice were investigated with variation in amount of water added and different cooking methods of pressure and electric cookers. Samples added with 1.3, 1.5, and 1.7 times of water were evaluated for sensory characteristics and for degree of gelatinization by enzyme digestion method upon one hour cooling at room temperature. Samples were reheated by microwave oven and then compaired with fresh samples through sensory evaluation under the same condition. Sensory attributes of rice cooked with 1.3, 1.5, and 1.7 times of water addition showed significant differences among the groups in most properties except in stickiness. Degree of gelatinization in fresh samples also indicated significant differences between the two cookers in varied rice to water ratio. There were significant differences among the samples, fresh and reheated by microwave oven. Revealed differences, however, were not great in the same type of cooker groups.

  • PDF

Studies on the Analytical Methods of Coal Ash (석탄회 분석 방법에 관한 연구)

  • Park, Hyun Joo;Kim, Kyeong Sook;Yang, Seug Ran;Lee, Gae Ho
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.563-572
    • /
    • 2000
  • The analysis of coal ash is very important to predict some factors, such as slagging and fouling in the boiler, and to determine optimum mixing ratios of the each coals used. In ASTM, the analysis of coal ash is clarified to use lithium metaborate (LiBO$_2$) as a fluxing agent and then to analyze the pre-treated samples using AAS. However, it takes too much time and efforts to analyze many samples by ASTM method, as a result, this method is not proper in our laboratory in charge of analyses of all power plants. So we tried to establish more convenient and accurate analytical method of coal ash by 3 different methods which are 2 different pre-treatment methods (fusion dissolution and microwave digestion) and XRF analysis method using a clear pellet. Although all 3 methods can be utilized to analyze the major elements of coal ash, each method has its own characteristics, therefore, each method should be chosen according to its own purpose.

  • PDF

Determination of Mercury in Fly Ash by Using Flow Injection Cold Vapor Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

  • Suh, Jung-Ki;Min, Hyung-Sik;Kamruzzaman, Mohammad;Lee, Sang-Hak
    • Mass Spectrometry Letters
    • /
    • v.3 no.2
    • /
    • pp.58-61
    • /
    • 2012
  • A method based on flow injection-isotope dilution-cold vapor-inductively coupled plasma mass spectrometry (FI-IDCV-ICP/MS) has been applied to determine trace level of mercury in fly ash. $^{200}Hg$ isotopic spike was added to 0.25 g of BCR176R fly ash and then decomposed by microwave digestion procedure with acid mixture A (8 mL $HNO_3$ + 2 mL HCl + 2 mL HF) and acid mixture B (8 mL $HNO_3$ + 2 mL $HClO_4$ + 2 mL HF) for applying IDMS. Mercury cold vapor was generated by using reductant solution of 0.2% (w/w) $NaBH_4$ and 0.05% (w/w) NaOH. The measurements of n($^{200}Hg$)/n($^{202}Hg$) isotope ratio was made using a quadrupole ICP/MS system. The accuracy in this method was verified by the analysis of certified reference material (CRM) of fly ash (BCR 176R). The indicative value of Hg in BCR 176R fly ash was $1.60{\pm}0.23$ mg/kg (k = 2). The determined values of Hg in BCR 176R fly ash by the method of FI-CV-ID-ICP/MS described in this paper were $1.60{\pm}0.24$ mg/kg (k = 3.18) and the analysis results were in well agreement with the indicative value within the range of uncertainty.

Analytical method for determination of 41Ca in radioactive concrete

  • Lee, Yong-Jin;Lim, Jong-Myoung;Lee, Jin-Hong;Hong, Sang-Bum;Kim, Hyuncheol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1210-1217
    • /
    • 2021
  • The analysis of 41Ca in concrete generated from the nuclear facilities decommissioning is critical for ensuring the safe management of radioactive waste. An analytical method for the determination of 41Ca in concrete is described. 41Ca is a neutron-activated long radionuclide, and hence, for accurate analysis, it is necessary to completely extract Ca from the concrete sample where it exists as the predominant element. The decomposition methods employed were the acid leaching, microwave digestion, and alkali fusion. A comparison of the results indicated that the alkali fusion is the most suitable way for the separation of Ca from the concrete sample. Several processes of hydroxide and carbonate precipitation were employed to separate 41Ca from interferences. The method relies on the differences in the solubility of the generated products. The behavior of Ca and the interfering elements such as Fe, Ni, Co, Eu, Ba, and Sr is examined at each separation step. The purified 41Ca was measured by a liquid scintillation counter, and the quench curve and counting efficiency were determined by using a certified reference material of known 41Ca activity. The recoveries in this study ranged from 56 to 68%, and the minimum detectable activity was 50 mBq g-1 with 0.5 g of concrete sample.

The Effect of Strong Acid and Ionic Material Addition in the Microwave-assisted Solubilization of Waste Activated Sludge (Microwave를 이용한 폐활성슬러지의 가용화 반응에서 강산과 이온성 물질의 첨가가 미치는 영향)

  • Lee, Jeongmin;Lee, Jaeho;Lim, Jisung;Kim, Youngwoo;Byun, Imgyu;Park, Taejoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.60-68
    • /
    • 2015
  • The study of waste activated sludge (WAS) solubilization has been increased for sludge volume reduction and enhancing the efficiency of anaerobic digestion. Microwave (MW)-assisted solubilization is an effective method for the solubilization of WAS because this method can lead to thermal, nonthermal effect and ionic conduction by dielectric heating. In this study, the solubilization of WAS by MW heating and conductive heating (CH) was compared and to enhance the MW-assisted solubilization of WAS at low MW output power, chemical agents were applied such as $H_2SO_4$ as the strong acid and $CaCl_2$, NaCl as the ionic materials. Compared to the COD solubilization of WAS by CH, that by MW heating was approximately 1.4, 6.2 times higher at $50^{\circ}C$, $100^{\circ}C$, respectively and the highest COD solubilization of WAS was 10.0% in this study of low MW output power condition. At the same MW output power and reaction time in chemically agents assisted experiments, the COD solubilization of WAS were increased up to 18.1% and 12.7% with the addition of $H_2SO_4$ and NaCl, however, that with the addition of $CaCl_2$ was 10.7%. This result might be due to the fact that the precipitation reaction occurred by calcium ion ($Ca^{2+}$) and phosphate ion (${PO_4}^{3-}$) produced in WAS after MW-assisted solubilization. In this study, $H_2SO_4$ turned out to be the optimal agent for the enhancement of MW efficiency, the addition of 0.2 M $H_2SO_4$ was the most effective condition for MW-assisted WAS solubilization.

Determination of Arsenic, Lead and Selenium in Rice Flour by Graphite Furnace Atomic Absorption Spectrometry (흑연로원자흡수분광법에 의한 쌀분말시료중의 비소, 납, 셀레늄의 정량)

  • Cho, Kyung-Haeng;Suh, Jung-Ki
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • A graphite furnace atomic absorption spectrometry (GFAAS) with matrix modification has been used to determine trace amounts of arsenic, lead and selenium in rice flour samples. A mixed solution of palladium and magnesium nitrate was used as a matrix modifier to convert the analyte elements into a phase of higher thermostability and to increase the volatility of concomitants in graphite furnace. Matrix modification effects by the mixed solution were investigated for several elements (As, Cd, Cu, Pb, Se, Zn). It has been found that the matrix modifier substantially increase the pyrolysis and atomization temperature, and absorbance for As, Pb and Se. The concentration of As, Pb and Se in rice flour samples were determined by standard addition method with Zeeman background correction after microwave acid digestion. In this method the characteristic concentrations of As, Pb and Se are 26 ng/g, 18 ng/g, 24 ng/g on the basis of dry sample respectively.

  • PDF

Preparation and Certification of Rice Flour Reference Materials for Trace Elements Analysis (미량원소분석을 위한 쌀분말 기준물질의 제조 및 검정)

  • Cho, Kyung-Haeng;Park, Chang-Joon;Woo, Jin-Choon;Suh, Jung-Ki;Han, Myung-Sub;Lee, Jong-Hae
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.271-280
    • /
    • 1998
  • Rice flour reference materials were prepared from the unpolished rice grown in Korea and certified for elemental composition. The reference materials consist of two samples containing normal and high level. The reference material at elevated level was prepared by spiking to the normal rice flour six toxic elements of As, Cd, Cu, Cr, Hg, Pb with $1.0{\mu}g/g$ on a dry weight basis. Homogeneity of the prepared materials was evaluated through the determination of Ca, Cu, Fe, Mn, Zn by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). Small variance of elemental composition among interbottled samples assured homogeneity of the prepared materials. The materials were decomposed by high pressure digestion and microwave digestion method. INAA, AAS, inductively coupled plasma-atomic absorption spectrometry (ICP-AES), ICP-mass spectrometry (MS) and vapour generation techniques were employed to analyze the reference materials. From this independent analytical results, the certified or reference values are determined for As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, P, Pb, Se, Zn.

  • PDF

A study on the analysis of uranium isotopes in environmental samples using a kinetic phosphorescence analyzer (반응속도론적 인광 분석기를 이용한 환경 시료 중 우라늄 동위원소 분석에 대한 연구)

  • Lee, Myung-Ho;Park, Ye-Eun;Nam, Jong-Soo;Sohn, Se-Chul;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.518-523
    • /
    • 2010
  • In this paper, the study of analysis of uranium isotopes in environmental samples with a kinetic phosphorescence analyzer (KPA) was described. After leaching uranium fraction from soil and glass material with microwave acid digestion technology, uranium isotopes were purified with UTEVA column, and then measured using KPA. Linearity and repeatability tests for measurement of uranium isotopes were carried out in the uranium standard solution with KPA. The reliability for analytical method of uranium with KPA was validated by its application to uranium standard solution, ground water, IAEA and NIST reference samples.

Monitoring Heavy Metals in Meat and Meat Products (식육 및 그 가공품의 중금속 모니터링)

  • Hwang, Tae-Ik;Ahn, Tae-Hyun;Kim, Eun-Jung;Lee, Jung-Ah;Kang, Myoung-Hee;Jang, Young-Mi;Kim, Mee-Hye
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.525-531
    • /
    • 2011
  • This study was conducted to examine the contents of lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg) in meat and meat products in Korea. The contents of Pb, Cd, As, and Hg in 466 samples of beef, pork, chicken, duck, ham, and sausage were measured using inductively coupled plasma mass spectrometry or a mercury analyzer. Wet ashing and microwave method were compared, and the recovery and reproducibility of the microwave method were better than those of wet ashing for meat and meat products. The recovery of the microwave method was 98.1% for Pb, 104.6% for Cd, and 103.4% for As, respectively. The best result was obtained through digestion using an acid mixture ($HNO_3$/$H_2O_2$, 6:2). Hg content was measured using a mercury analyzer. As a result, the contents of Hg and Cd in samples were lower than those of Pb and As. The average contents of Pb were 0.009 mg/kg in beef, 0.010 mg/kg in pork, 0.006 mg/kg in chicken, 0.007 mg/kg in duck, 0.005 mg/kg in ham, and 0.009 mg/kg in sausage. The average Cd contents were 0.0004 mg/kg in beef, 0.0004 mg/kg in pork, 0.0005 mg/kg in chicken, 0.0012 mg/kg in duck, 0.0015 mg/kg in ham, and 0.0019 mg/kg in sausage. The average As contents were 0.016 mg/kg in beef, 0.004 mg/kg in pork, 0.021 mg/kg in chicken, 0.010 mg/kg in duck, 0.014 mg/kg in ham, and 0.018 mg/kg in sausage. The average Hg contents were 0.713 ${\mu}g/kg$ in beef, 0.902 ${\mu}g/kg$ in pork, 0.710 ${\mu}g/kg$ in chicken, 0.796 ${\mu}g/kg$ in duck, 1.141 ${\mu}g/kg$ in ham, and 1.052 ${\mu}g/kg$ in sausage. Based on the results of the National Health and Nutrition Survey 2005, the levels of dietary exposure to heavy metal contaminants in meat and meat products were compared with the provisional tolerable weekly intake(PTWI) established by the Joint FAO/WHO Expert Committee on Food Additives. The average dietary exposure of the general population from meat and meat products was 0.03-0.2% of PTWI for Pb, Cd, As, and Hg, which indicates a safe level for public health at present.