Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government, Ministry of Science and ICT (No. 2017M2A8A5015143).
References
- IAEA, Operational reactors by age, 2020. https://pris.iaea.org/PRIS/WorldStatistics/OperationalByAge.aspx. (Accessed 14 May 2020).
- OECD and NEA, R&D and Innovation Needs for Decommissioning of Nuclear Facilities, 2014. NEA No. 7191.
- R. Aker, Maine Yankee Decommissioning Experience Report (1997-2004), New Horizon Scientific, LLC, 2005.
- KAERI, Nuclear data center at KAERI, 2020. http://atom.kaeri.re.kr. (Accessed 14 May 2020).
- IAEA, Radiological Characterization of Shut Down Nuclear Reactors for Decommissioning Purposes, International Atomic Energy Agency, Vienna, 1998. TRS No. 389.
- X. Hou, Radiochemical determination of 41Ca in nuclear reactor concrete, Radiochim. Acta 93 (9-10) (2005) 611-617. https://doi.org/10.1524/ract.2005.93.9-10.611
- D. Hampe, B. Gleisberg, S. Akhmadaliev, G. Rugel, S. Merchel, Determination of 41Ca with LSC and AMS: method development, modifications and applications, J. Radioanal. Nucl. Chem. 296 (2) (2013) 617-624. https://doi.org/10.1007/s10967-012-2145-8
- A.J. Pearson, S. Gaw, N. Hermanspahn, C.N. Glover, Natural and anthropogenic radionuclide activity concentrations in the New Zealand diet, J. Environ. Radioact. 151 (2016) 601-608. https://doi.org/10.1016/j.jenvrad.2015.05.022
- P.E. Warwick, I.W. Croudace, D.J. Hillegonds, Effective determination of the long-lived nuclide 41Ca in nuclear reactor bioshield concretes: comparison of liquid scintillation counting and accelerator mass spectrometry, Anal. Chem. 81 (5) (2009) 1901-1906. https://doi.org/10.1021/ac802225a
- L. Hoon, L. Jong-Myoung, J. Young-Yong, J. Kun-Ho, K. Mun-Ja, C. Geun-Sik, L. Jin-Hong, Comparison of pretreatment methods for determination of 55Fe and 63Ni activity in nuclear wastes sample, Journal of Nuclear Fuel Cycle and Waste Technology 13 (2) (2015) 113-122. https://doi.org/10.7733/JNFCWT.2015.13.2.113
- E. Braysher, B. Russell, S. Woods, M. Garcia-Miranda, P. Ivanov, B. Bouchard, D. Read, Complete dissolution of solid matrices using automated borate fusion in support of nuclear decommissioning and production of reference materials, J. Radioanal. Nucl. Chem. 321 (1) (2019) 183-196. https://doi.org/10.1007/s10967-019-06572-z
- B. Russell, M. Garcia-Miranda, P. Ivanov, Development of an optimised method for analysis of 90Sr in decommissioning wastes by triple quadrupole inductively coupled plasma mass spectrometry, Appl. Radiat. Isot. 126 (2017) 35-39. https://doi.org/10.1016/j.apradiso.2017.01.025
- Q. Chen, X. Hou, Y. Yu, H. Dahlgaard, S.P. Nielsen, Separation of Sr from Ca, Ba and Ra by means of Ca(OH)2 and Ba(Ra)Cl2 or Ba(Ra)SO4 for the determination of radiostrontium, Anal. Chim. Acta 466 (1) (2002) 109-116. https://doi.org/10.1016/S0003-2670(02)00571-8
- J.S. Becker, Mass spectrometry of long-lived radionuclides, Spectrochim. Acta B Atom Spectrosc. 58 (10) (2003) 1757-1784. https://doi.org/10.1016/S0584-8547(03)00156-3
- I.W. Croudace, B.C. Russell, P.W. Warwick, Plasma source mass spectrometry for radioactive waste characterisation in support of nuclear decommissioning: a review, J Anal Atom Spectrom 32 (3) (2017) 494-526. https://doi.org/10.1039/C6JA00334F
- C.K. Kim, R. Seki, S. Moritat, S.I. Yamasaki, A. Tsumura, Y. Takaku, Y. Igarashi, M. Yamamoto, Application of a high resolution inductively coupled plasma mass spectrometer to the measurement of long-lived radionuclides, J Anal Atom Spectrom 6 (3) (1991) 205-209. https://doi.org/10.1039/JA9910600205
- J. Sabine Becker, Recent developments in isotope analysis by advanced mass spectrometric techniques Plenary lecture, J Anal Atom Spectrom 20 (11) (2005) 1173-1184. https://doi.org/10.1039/b508895j
- X. Hou, P. Roos, Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples, Anal. Chim. Acta 608 (2) (2008) 105-139. https://doi.org/10.1016/j.aca.2007.12.012
- L. Zerle, T. Faestermann, K. Knie, G. Korschinek, E. Nolte, J. Beer, U. Schotterer, The 41Ca bomb pulse and atmospheric transport of radionuclides, J. Geophys. Res.: Atmosphere 102 (D16) (1997) 19517-19527. https://doi.org/10.1029/97JD00701
- N. Trautmann, G. Passler, K. Wendt, Ultratrace analysis and isotope ratio measurements of long-lived radioisotopes by resonance ionization mass spectrometry (RIMS), Anal. Bioanal. Chem. 378 (2004) 348-355. https://doi.org/10.1007/s00216-003-2183-8
- E. Nottoli, D. Bourles, P. Bienvenu, A. Labet, M. Arnold, M. Bertaux, Accurate determination of 41Ca concentrations in spent resins from the nuclear industry by Accelerator Mass Spectrometry, Appl. Radiat. Isot. 82 (2013) 340-346. https://doi.org/10.1016/j.apradiso.2013.09.005
- H. Kim, Y. Jung, Y.Y. Ji, J.M. Lim, K.H. Chung, M.J. Kang, Validation of a procedure for the analysis of 226Ra in naturally occurring radioactive materials using a liquid scintillation counter, J. Environ. Radioact. 166 (2017) 188-194. https://doi.org/10.1016/j.jenvrad.2016.05.003
- A. Carles, Synergic quenching effects of water and carbon tetrachloride in liquid scintillation gel samples, Appl. Radiat. Isot. 64 (2006) 1505-1509. https://doi.org/10.1016/j.apradiso.2006.02.065
- L.A. Currie, Limits for qualitative detection and quantitative determination: application to radiochemistry, Anal. Chem. 40 (3) (1968) 586-593. https://doi.org/10.1021/ac60259a007