• Title/Summary/Keyword: microwave cavity

Search Result 98, Processing Time 0.025 seconds

Measurement of High Temperature Dielectric Property at Microwave Frequency Using Cavity Perturbation Method (Cavity Perturbation Method를 이용한 마이크로파 주파수대의 고온 유전특성 측정 연구)

  • Kim, Dong-Eun;Jung, Jin-Ho;Lee, Sung-Min;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.455-461
    • /
    • 2006
  • High temperature dielectric constants of the various ceramic materials have been measured using cavity perturbation method. The measurements were applied to refractory, traditional and fine ceramic powder compacts from room temperature to $1200^{\circ}C$. Calibration constant in the equation suggested by Hutcheon et al., was determined from the dielectric constants of reference specimen (teflon and alumina) at room temperature. From these results, informations on the refectory materials were obtained for the microwave kiln design and understanding of the microwave heating effects of ceramics have been improved.

Design and Characterization of a Microwave Plasma Source Using a Rectangular Resonant Cavity (마이크로웨이브 공진 공동을 이용한 플라즈마 원의 설계 및 특성)

  • Kim, H.T.;Park, Y.S.;Sung, C.K.;Yi, J.R.;Hwang, Y.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.408-418
    • /
    • 2008
  • The rectangular resonant cavity was designed and characterized as a microwave plasma source for focused ion beam. The optimum cavity was calculated analytically and analyzed in detail by using HFSS(High Frequency Structure Simulator). Since the resonant cavity can be affected by the permittivity of quartz chamber and plasma, the cavity is designed to be changeable in one direction. By observing the microwave input power at which the breakdown begins, the optimum cavity length for breakdown is measured and compared with the calculated one, showing in good agreement with the optimum length reduced by 10cm according to the permittivity change in the presence of quartz chamber. The shape of breakdown power curve as a function of pressure appears to be similar to Paschen-curve. After breakdown, plasma densities increase with microwave power and the reduced effective permittivity in the cavity with plasma results in larger optimum length. However, it is not possible to optimize the cavity condition for high density plasmas with increased input power, because too high input power causes expansion of density cutoff region where microwave cannot penetrate. For more accurate microwave cavity design to generate high density plasma, plasma column inside and outside the density cutoff region needs to be treated as a conductor or dielectric.

Characterization of Atomic Emission Detector for Gas Chromatography Using Cylindrical Microwave Cavity (원통형 Microwave Cavity를 이용한 기체크로마토그라프 원자발광 검출기의 특성에 관한 연구)

  • Park, Young-Joo;Yoo, Hee-Soo
    • Analytical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.263-268
    • /
    • 1992
  • A plasma source with cylindrical microwave cavity was used as atomic emission detector for gas chromatography. Detection limits of several elements were determined for this system. Detection limits for bromine and sulfur were 0.46 pg/s and 0.51 ng/s, respectively. The plasma was stable at the range of flow rate of 10 to 20mL/min.

  • PDF

Effect of Cavity Material on the Q-Factor Measurement of Microwave Dielectric Materials (캐비티 재질이 마이크로파 유전체 공진기의 Q값 측정에 미치는 영향)

  • Park, Jae-Hwan;Park, Jae-Gwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.39-43
    • /
    • 2011
  • Effects of cavity material on the Q-factor measurement of microwave dielectric materials were studied by HFSS simulation and the measurements using metal cavity. $TE_{01\delta}$ mode resonant frequency was determined from the electric and magnetic field patterns and the loaded Q-factor was calculated from 3dB bandwidth of $S_{21}$ spectrum. When the cavity metal materials were Cu, SUS and Au cavity, the level of Q-factor was similar. However, Q-factor was significantly decreased when the cavity metal material was CuO. The Q-factor measurements of dielectric resonator by network analyzer using various metal cavity exhibits consistent behavior.

Microwave Cavity with Controllable Temperature for In Vitro Hyperthermia Investigations

  • Kiourti, Asimina;Sun, Mingrui;He, Xiaoming;Volakis, John L.
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.267-272
    • /
    • 2014
  • Hyperthermia is a form of cancer treatment in which affected human tissue is exposed to $>40^{\circ}C$ temperature. In this paper, our goal is to assess the efficacy of fullerene agents to reduce heating time for cancer treatment. Such agents can accelerate heating of cancer cells and improve hyperthermia treatment efficacy. Typically, in vitro testing involves cancer cell culturing, heating cell cultures in accordance to specifications, and recording cancer cell viability after hyperthermia. To heat cell cultures, we design and evaluate a 2.4-GHz microwave cavity with controllable temperature. The cavity is comprised of a polystyrene cell culture dish (diameter = 54 mm, height = 13.5 mm) and a printed monopole antenna placed within the cavity for microwave heating. The culture temperature can be controlled through the intensity and duration of the antenna's microwave radiation. Heating experiments were carried out to validate the cavity's performance for F-12K culture medium (Kaighn's F-12K medium, ATCC). Importantly, fullerene agents were shown to reduce heating time and improve hyperthermia treatment efficacy. The culture medium temperature increased, on average, from $24.0^{\circ}C$ to $50.9^{\circ}C$ (without fullerene) and from $24.0^{\circ}C$ to $56.8^{\circ}C$ (with 3 mg/mL fullerene) within 15 minutes.

Microwave Dielectric Absorption Spectroscopy Aiming at Novel Dosimetry Using DNAs

  • Izumi, Yoshinobu;Hirayama, Makoto;Matuo, Youichirou;Sunagawa, Takeyoshi
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.21-25
    • /
    • 2017
  • Background: We are developing L-band and S-band microwave dielectric absorption systems aiming novel dosimetry using DNAs, such as plasmid DNA and genomic DNA, and microwave technology. Materials and Methods: Each system is composed of a cavity resonator, analog signal generator, circulator, power meter, and oscilloscope. Since the cavity resonator is sensitive to temperature change, we have made great efforts to prevent the fluctuation of temperature. We have developed software for controlling and measurement. Results and Discussion: By using this system, we can measure the resonance frequency, f, and ${\Delta}Q$ (Q is a dimensionless parameter that describes how under-damped an oscillator or resonator is, and characterizes a resonator's bandwidth relative to its center frequency) within about 3 minutes with high accuracy. Conclusion: This system will be expected to be applicable to DNAs evaluations and to novel dosimetric system.

An automated measurement system for the microwave surface resistance of high-T$_c$ superconductor films

  • Lee, J.H.;Lim, J.;Lee, Jung-Hun;Lee, Sang-Young
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.173-178
    • /
    • 2000
  • A prototype for a highly sensitive, automated measurement system for the microwave surface resistance of high-T$_c$ superconductor films was set up, and tested by measuring the microwave surface resistances of high-T$_c$ YBa$_2$Cu$_3$O$_{7-{\delta}}$(YBCO) films at the frequency of about 19.6 GHz and the temperature of 30 K ${\sim}$ 90 K. An open-ended TE$_{011}$ mode sapphire-loaded cylindrical cavity resonator was used as the measurement probe, where YBCO films were used as the endplates of the cylindrical cavity. The characteristics of the measurement system include functions to display the unloaded ${\varrho}$ and the resonant frequency of the TE$_{011}$ mode resonator as well as the microwave surface resistance of the YBCO films, all simultaneously as a function of temperature. Applicability of the measurement system for investigating the homogeneity in the microwave properties of large high-T$_c$ superconductor films is discussed.

  • PDF

An Automated Measurement System for the Microwave Surface Resistance of High-$T_c$ Superconductor Films

  • Lee, J.H.;Lim, J.;Lee, Jung-Hun;Lee, Sang-Young
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • A prototype for a highly sensitive, automated measurement system for the microwave surface resistance of high-$T_c$ superconductor films was set up, and tested by measuring the microwave surface resistances of high-$T_c$ $YBa_2Cu_3O_{7-\delta}$ (YBCO) films at the frequency of about 19.6 GHz and the temperature of 30 K $\sim$ 90 K. An open-ended $TE_{011}$ mode sapphire-loaded cylindrical cavity resonator was used as the measurement probe, where YBCO films were used as the endplates of the cylindrical cavity. The characteristics of the measurement system include functions to display the unloaded Q and the resonant frequency of the $TE_{011}$ mode resonator as well as the microwave surface resistance of the YBCO films, all simultaneously as a function of temperature. Applicability of the measurement system for investigating the homogeneity in the microwave properties of large high-$T_c$ superconductor films is discussed.

  • PDF

CFD Numerical Calcultion for a Cavity Matrix Combustor Applying Biogas (바이오가스 적용 캐비티 매트릭스 연소기 CFD 수치연산)

  • CHUN, YOUNG NAM;AN, JUNE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.598-606
    • /
    • 2022
  • With the advancement of industry, the use of various sustainable energy sources and solutions to problems affecting the environment are being actively requested. From this point of view, it is intended to directly burn unused biogas to use it as energy and to solve environmental problems such as greenhouse gases. In this study, a new type of cavity matrix combustor capable of low-emission complete combustion without complex facilities such as separation or purification of biogas produced in small and medium-sized facilities was proposed, and CFD numerical calculation was performed to understand the performance characteristics of this combustor. The cavity matrix combustor consists of a burner with a rectangular porous microwave receptor at the center inside a 3D cavity that maintains a rectangular parallelepiped shape composed of a porous plate that can store heat in the combustor chamber. As a result of numerical calculation, the biogas supplied to the inlet of the combustor is converted to CO and H2, which are intermediate products, on the surface of the 3D matrix porous burner. And then the optimal combustion process was achieved through complete combustion into CO2 and H2O due to increased combustibility by receiving heat energy from the microwave heating receptor.