• 제목/요약/키워드: microstructure hardness

검색결과 1,339건 처리시간 0.037초

DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 증착된 HfN 코팅막의 물성 비교연구 (A Comparative Study of HfN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering)

  • 전성용;정평근
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.103.2-103.2
    • /
    • 2017
  • Nanocrystalline HfN coatings were prepared by reactively sputtering Hf metal target with N2 gas using a magnetron sputtering system operated in DC and ABPP (asymmetric bipolar pulsed plasma) condition with various duties and frequencies. The effects of duty and frequency, ranging from 75 to 100 % and 5 to 50 kHz, on the coating microstructure, crystallographic and mechanical properties were systematically investigated with FE-SEM, AFM, XRD and nanoindentation. The results show that pulsed plasma has a significant influence on coating microstructure and mechanical properties of HfN coatings. Coating microstructure evolves from the columnar structure to a highly dense one as duty decreases. Average grain size and nano hardness of HfN coatings were also investigated with various pulsed conditions.

  • PDF

DC 스퍼터법과 유도결합형 플라즈마 스퍼터법으로 증착된 HfN 코팅막의 물성 비교연구 (A Comparative Study of Nanocrystalline HfN Coatings Fabricated by Direct Current and Inductively Coupled Plasma Assisted Magnetron Sputtering)

  • 전성용;이소연
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.103.1-103.1
    • /
    • 2017
  • Nanocrystalline HfN coatings were prepared by reactively sputtering Hf metal target with N2 gas using a magnetron sputtering system operated in DC and ICP (inductively coupled plasma) condition with various powers. The effects of ICP power, ranging from 0 to 200 W, on the coating microstructure, corrosion and mechanical properties were systematically investigated with FE-SEM, AFM, potentiostat and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of HfN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Average grain size and nano hardness of HfN coatings were also investigated with increasing ICP powers.

  • PDF

나노압입시험법을 이용한 열처리 소재의 미소 변형 거동 평가 (Characterizing Small-scale Mechanical Behaviors of Heat-treated Materials with Nanoindentation Technique)

  • 최인철
    • 열처리공학회지
    • /
    • 제33권2호
    • /
    • pp.72-79
    • /
    • 2020
  • To improve the mechanical properties of most structural materials for industrial applications, the control of microstructure is essential by heat treatment process or plastic deformation process. Since the mechanical behavior of structural materials is significantly influenced by their microstructure, it is inevitably preceded to understand the relationship between microstructure and strengthening mechanisms of materials which can be easily changed by heat treatment. In this regard, the nanoindentation test is useful technique for analyzing the influence of the localized microstructural change on small-scale mechanical behavior of various structural materials. Here, the interesting studies performed on various heat-treated materials are reviewed with focus on micromechanical properties obtained by nanoindentation, which are reported in the available literature.

Effect of Cr2O3 Content on Densification and Microstructural Evolution of the Al2O3-Polycrystalline and Its Correlation with Toughness

  • Seo, Mi-Young;Kim, Hee-Seung;Kim, Ik-Jin
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.469-471
    • /
    • 2006
  • The effects of $Cr_2O_3$ on the microstructural evolution and mechanical properties of $Al_2O_3$ polycrystalline were investigated. The microstructure of $Al_2O_3-Cr_2O_3$ composites (ruby) was carefully controlled in order to obtain dense and fine-grained ceramics, thereby improving their properties and reliability with respect to numerous applications related to semiconductor bonding technology. Ruby composites were produced by Ceramic Injection Molding (CIM) technology. Room temperature strength, hardness, Young's modulus and toughness were determined, as well as surface strengthening induced by thermal treatment and production of a fine-grained homogenous microstructure.

변형된 실리콘의 미세구조와 기계적 거동 (The Microstructure and Mechanical Behavior of Deformed Silicon)

  • 김성원;김형태
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.510-514
    • /
    • 2009
  • The microstructure and mechanical behavior of deformed silicon were characterized using transmission electron microscopy and nanoindentation. Structural defects such as stacking faults and dislocations were observed through the diffraction contrast in transmission electron microscopy. The mechanical properties of deformed Si and 111 Si wafer and mechanical behaviors during contact loading were also characterized using nanoindentation. The hardness values of silicon samples were ${\sim}10$ GPa and the elastic modulus were varied with indentation conditions. Elbow or pop-out behaviors were found in load-displacement curves of silicon samples during nanoindentation. Deformed silicon showed 'pop-out' behavior more frequently under the load of 10 mN, which is attributed to the structural defects in deformed silicon.

내마모 구조 코팅용 Cr-Al-Si-N 코팅막의 미세구조와 기계적 특성에 관한 연구 (Microstructure and Mechanical Properties of Cr-Al-Si-N Coatings for Wear Resistant and Structural Applications)

  • 강동식;김광호
    • 한국재료학회지
    • /
    • 제15권11호
    • /
    • pp.730-734
    • /
    • 2005
  • Cr-Al-Si-N coatings were deposited on WC-Co substrates by a hybrid coating system of arc ion plating and DC magnet :on sputtering technique in $N_2/Ar$ mixture. The Cr-tll-Si-N coatings were synthesized with different Si contents. Their microstructure and mechanical properties were systematically investigated. The average size of crystallites largely decreases with the increase of Si content compared with Cr-Al-N. The microhardness of Cr-Al-Si-N coatings largely increases from 24 to 55 GPa. The enhanced hardness is believed to originate from the microstructural change by the fine composite microstructure of Cr-Al-N coatings with Si addition. The average friction coefficient of Cr-Al-Si-N coatings decreases from 0.84 to 0.45 with increasing Si content up to $16\;at.\%$.

플라즈마질화 및 침질탄화처리한 탄소강의 경도와 내마모특성 (Characteristics of Hardness and Wear-Resistance of Plasma-Nitrided and Nitrocarburized Carbon Steels)

  • 김무길;정병호;박화순;이병찬;신성하;이재식
    • 열처리공학회지
    • /
    • 제12권2호
    • /
    • pp.166-173
    • /
    • 1999
  • Commercial carbon steels containing 0.2~0.55 wt.----C were plasma-nitrided or plasma nitrocarburized at $550^{\circ}C$ for 21.6Ks using $H_2-N_2$ or $H_2-N_2$-CO mixed gas respectively. The characteristics of hardening and wear-resistance of each treatment were studied and compared. And also microstructure of nitrided layer and nitrides formed in compound layer near surface were studied. All plasma-nitrided steels investigated showed remarkable increase of surface hardness with the increase of carbon content. But nitrocarburized steels resulted in higher surface-hardness than plasma-nitrided steels, which means that nitrocarburized has higher surface-hardening effect. Plasma-nitrided steels showed hardness increase in through-thickness direction near surface. And also nitrocarburized steels showed similar hardness distribution in through-thickness direction to that of plasma-nitrided steel. However, nitrocarburized steels had higher cross-sectional maximum-hardness than plasma-nitrided steels as much as 100Hv. Wear test showed that the amount of specific wear was reduced by both plasma-nitriding and nitrocarburized, showing that the amount of specific wear was not related to the hardness. But non-treated specimen showed that the amount of specific wear was related to the hardness.

  • PDF