DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of Cr-Al-Si-N Coatings for Wear Resistant and Structural Applications

내마모 구조 코팅용 Cr-Al-Si-N 코팅막의 미세구조와 기계적 특성에 관한 연구

  • Kang, Dong-Shik (Division of Materials Science and Engineering, Pusan National University) ;
  • Kim, Kwang-Ho (Division of Materials Science and Engineering, Pusan National University)
  • Published : 2005.11.01

Abstract

Cr-Al-Si-N coatings were deposited on WC-Co substrates by a hybrid coating system of arc ion plating and DC magnet :on sputtering technique in $N_2/Ar$ mixture. The Cr-tll-Si-N coatings were synthesized with different Si contents. Their microstructure and mechanical properties were systematically investigated. The average size of crystallites largely decreases with the increase of Si content compared with Cr-Al-N. The microhardness of Cr-Al-Si-N coatings largely increases from 24 to 55 GPa. The enhanced hardness is believed to originate from the microstructural change by the fine composite microstructure of Cr-Al-N coatings with Si addition. The average friction coefficient of Cr-Al-Si-N coatings decreases from 0.84 to 0.45 with increasing Si content up to $16\;at.\%$.

Keywords

References

  1. C. Rebholz, H. Ziegele, A. Leyland and A. Mattew, Surf. Coat. Technol., 115, 222 (1999) https://doi.org/10.1016/S0257-8972(99)00240-6
  2. J. Creus, H. Indriss, H. Mazille, F. Sanchette and P. Jacquot, Surf. Coat. Technol., 107, 183 (1998) https://doi.org/10.1016/S0257-8972(98)00646-X
  3. P. Hones, R. Sanjines and F. Levy, Thin Solid Films, 332, 240 (1998) https://doi.org/10.1016/S0040-6090(98)00992-4
  4. K. H. Lee, C. H. Park, Y. S. Yoon and J. J. Lee, Thin Solid Films, 385, 167 (2001) https://doi.org/10.1016/S0040-6090(00)01911-8
  5. P. Hones, M. Diserens, R. Sanjines, F. Levy and J. Vac. Sci. Technol., B 18, 2851 (2000) https://doi.org/10.1116/1.1320806
  6. J. Vetter, E. Lugscheider and S. S. Guerreiro, Surf. Coat. Technol., 98, 1231 (1998) https://doi.org/10.1016/S0257-8972(97)00238-7
  7. M. Kawate, A. K. Hashimoto and T. Suzuki, Surf. Coat. Technol., 165, 163 (2003) https://doi.org/10.1016/S0257-8972(02)00473-5
  8. O. Banakh, P. E. Schmud, R. Sanjines and F. Levy, Surf. Coat. Technol., 163, 57 (2003) https://doi.org/10.1016/S0257-8972(02)00589-3
  9. F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J. P. Riviere, A. Cavaleiro and E. Alves, Surf. Coat. Technol., 133, 307 (2000) https://doi.org/10.1016/S0257-8972(00)00947-6
  10. O. N. Park, J. Hyun Park, S. Y. Yoon, M. H. Lee and K. H. Kim, Surf. Coat. Technol., 179, 83 (2004) https://doi.org/10.1016/S0257-8972(03)00769-2
  11. S. R. Choi, I. W. Park, S. H. Kim and K. H. Kim, Thin Solid Films, 447, 371 (2004) https://doi.org/10.1016/S0040-6090(03)01085-X
  12. M. Diserens, J. Patscheider and F. Levy, Surf. Coat. Technol., 108, 241 (1998) https://doi.org/10.1016/S0257-8972(98)00560-X
  13. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc, Minesota, pp. 238 (1995)
  14. A. Lasalmonie and J. L. Strudel, J. Mater. Sci., 21, 1837 (1986) https://doi.org/10.1007/BF00547918
  15. S. Veprek, S. Reiprich, Thin Solid Films, 268, 64 (1995) https://doi.org/10.1016/0040-6090(95)06695-0
  16. K. H. Kim, S.-R. Choi and S.Y. Yoon, Surf. Coat. Technol., 298, 243 (2002) https://doi.org/10.1016/S0257-8972(02)00499-1
  17. J. Takadoum, H. Houmid-Bennani and D. Mairey, J. Eur. Ceram. Soc., 18, 553 (1998) https://doi.org/10.1016/S0955-2219(97)00157-X