플라즈마질화 및 침질탄화처리한 탄소강의 경도와 내마모특성

김무길 • 정병호 • 박화순＊• 이병찬 • 신성하＊＊．이재식＊＊＊
부경대학교 금속공학과，＊부경대학교 재료공학과
＊＊부경대학교 금속공학과 대학원，＊＊＊울산대학교 재료－금속공학부

Characteristics of Hardness and Wear－Resistance of Plasma－Nitrided and Nitrocarburized Carbon Steels

M．K．Kim，B．H．Jung，H．S．Park＊，B．C．Lee，S．H．Shin＊＊and J．S．Lee＊＊＊
Dept．of Metall．Eng．，Pukyong National University，Pusan 608－739，Korea
＊Dept．of Mat．Eng．，Pukyong National University，Pusan 608－739，Korea
＊＊Dept．of Metall．Eng．，Graduate School，Pukyong National University，Korea
＊＊＊Dept．of Met．and Mat．Eng．．University of Ulsan 680－749，Korea

Abstract

Commercial carbon steels containing $0.2 \sim 0.55 \mathrm{wt} . \% \mathrm{C}$ were plasma－ nitrided or plasma nitrocarburized at $550^{\circ} \mathrm{C}$ for 21.6 Ks using $\mathrm{H}_{2}-\mathrm{N}_{2}$ or $\mathrm{H}_{2}-\mathrm{N}_{2}-\mathrm{CO}$ mixed gas respectively．The characteristics of hardening and wear－resistance of each treatment were studied and compared．And also microstructure of nitrided layer and nitrides formed in compound layer near surface were studied．All plasma－nitrided steels investigated showed remarkable increase of surface hardness with the increase of carbon content．But nitrocarburized steels resulted in higher surface－hardness than plasma－ nitrided steels，which means that nitrocarburized has higher surface－hardening effect． Plasma－nitrided steels showed hardness increase in through－thickness direction near surface．And also nitrocarburized steels showed similar hardness distribution in through－ thickness direction to that of plasma－nitrided steel．However，nitrocarburized steels had higher cross－sectional maximum－hardness than plasma－nitrided steels as much as 100 Hv．Wear test showed that the amount of specific wear was reduced by both plasma－ nitriding and nitrocarburized，showing that the amount of specific wear was not related to the hardness．But non－treated specimen showed that the amount of specific wear was related to the hardness．

Key words ：Carbon steel，Plasma－nitriding，Nitrocarburizing，Surface－hardness， Compound layer，Hardness distribution，Wear resistance，Specific－wear

1．서 론

최근 산업계의 기술혁신은 부품의 경량화 뿐 아 니라．열처리분야에서도 고기능화，고정밀화，에너 지절감，무공해 작업환경 등이 요구되는 시대가 되

어 있다．이러한 산업계의 기술혁신에 있어서 재료 의 표면개질（surface modification）은 새로운 기술분 야로서 주목을 받고 있으며 그 중에서 재료 그 자 체의 기본적인 성질은 변화시키지 않고 표면의 경 도만을 증가시켜 그 재료의 내마모성을 향상시키

는 방법은 오래 전부터 연구가 진행되어 왔으며， 현재 표면개질 기술의 대부분은 이러한 표면경화 처리법으로 진행되고 있다＂．이 방법은 철강재료 를 중심으로 많이 이용되고 있으며，그 중 가장 널 리 이용되고 있는 것이 질화법으로，가스 및 염욕 질화법의 단점）${ }^{2}$ 을 보완하기 위해 글로우（glow）방 전을이용한 플라즈마질화법（Plasma nitriding process）은 저압의 분위기 중에서 질소가스를 이온 화시키고，음극의 피처리물 표면에 충돌시켜서 질 화하는 방법으로 질화시간 단축，에너지 절감 및 무공해 표면경화법으로 주목을 받고 있는 방법 중 의 하나이다 ${ }^{3-5)}$ ．이 방법은 플라즈마의 높은 에너 지를 이용하여 $\mathrm{C}, \mathrm{N}, \mathrm{B}$ 등의 원소를 철강재료의 표 면에 확산－침투시켜 높은 표면경도에 의한 내마 모성의 향상 및 내피로성，내식성올 향상시키는 것으로 알려져 있으며 ${ }^{6-8)}$ ，질화충의 형성기구나 화 합물층 및 확산층의 질화물 생성에 관여하는 처리 조건의 영향，질화충의 경도 및 깊이에 미치는 합 금원소의 영향 둥도 어느 정도 밝혀져 있다 ${ }^{\sim 11)}$
그러나 현재까지 플라즈마질화처리에 의한 질화 특성의 계통적인 연구는 질화강，스테인리스강，난 질화금속 둥을 주로 그 대상으로 하고 있으나 ${ }^{12)}$ ${ }^{13)}$ ，가장 보편적으로 많이 사용되는 탄소강에 대한 연구는 단지 비교 데이터용이거나 실용화에 따른 부분적인 연구•검토만 되어 온 실정이며 엔진부 품，Shaft Gear，Chain 등 그 용도 및 사용량에서 볼 때 중요한 비중을 차지하는 탄소강의 플라즈마 질화처리에 의한 경도 및 내마모 특성에 대한 체 계적인 연구가 적은 실정이다．
따라서 본 연구에서는 기계구조용 부품으로 널

리 사용되는 탄소강을 $\mathrm{H}_{2}+\mathrm{N}_{2}$ 및 $\mathrm{H}_{2}+\mathrm{N}_{2}+\mathrm{CO}$ 의 흔합가스를 사용하여 플라즈마질화 처리하였을 경 우 탄소함량에 따른 질화충의 조직과 특성에 대하 여 조사하고 동시에 표면에 형성된 질화물과 경도 가 내마모특성에 미치는 영향을 비교•분석하여 플라즈마 질화법의 확대적용을 위한 기초자료를 제시하고자 하였다．

2．실험방법

2.1 사용재료

본 연구에 사용한 재료는 탄소 함유량이 0．2～ 0.55 wt \％범위인 SM20C，35C，45C 및 SM55C의 4 종의 시판용 탄소강으로서 그 화학조성은 Table 1 과 같다．구입한 봉재는 표면부위를 절삭한 후 두 께 5 mm 의 크기로 하였고，표면은 에머리페이퍼 \＃800까지 연마하여 질화처리용 시험편으로 사용 하였다．

2.2 폴라즈마질화처리

풀라즈마질화처리는 시간，온도，압력 및 가스비 율 둥의 여러 가지 변수가 있으나，본 실험에서는 질화처리전 0.7 Pa 이하로 배기시킨 후，로 내에 반 웅가스를 $\mathrm{H}_{2}: \mathrm{N}_{2}=1: 1$ 의 체적비로 흔합하여 800 Pa 의 일정한 압력으로 처리한 시험（플라즈마질 화，Plasma nitriding）과 반웅가스를 $\mathrm{H}_{2}: 20 \% \mathrm{CO}-$ $80 \% \mathrm{~N}_{2}=1: 4$ 의 비율로 혼합하여 270 Pa 의 압력 에서 처리한 시험（플라즈마침질탄화，Plasma nitrocarburizing）으로 구분하였다．

각각의 처리은도와 시간은 $550^{\circ} \mathrm{C}, 21.6 \mathrm{Ks}$ 로 동일

Table 1．Chemical composition of materials used

Material	Chemical composition（wt．96）									
	C	Si	Mn	P	S	$\mathbf{N i}$	Cr	Mo	N	0
SM20C	0.21	0.23	0.42	0.014	0.008	0.05	0.09	0.01		
SM35C	0.36	0.29	0.74	0.015	0.018	－	－	－	－	－
SM45C	0.44	0.24	0.72	0.026	0.016	0.01	0.11	0.01	－	－
SM55C	0.54	0.26	0.69	0.022	0.011	0.05	0.19	0.02	－	－

하게 하였으며, 시험편의 가열속도는 약 $40^{\circ} \mathrm{C} / \mathrm{min}$, 넝각속도는 질화온도로부터 $400^{\circ} \mathrm{C}$ 까지는 약 $70^{\circ} \mathrm{C}$ $/ \mathrm{min}$ 로 냉각하였고, $400^{\circ} \mathrm{C}$ 에서 실온까지는 노냉하 였다.

2.3 미세조직 및 질화물 관찰

각 실험에서 처리된 시편은 연마 후 3% nital로 에칭한 다음 주사전자헌미경(SEM)으로 형성된 경 화층을 관찰하였고, 질화충 표면의 생성상은 X-선 회절(XRD)법에서 $\mathrm{CuK} \boldsymbol{a}$ 선을 사용하여 규명하였 다. 또, 화합물충 및 확산충의 $\mathrm{N}, \mathrm{C}, \mathrm{Fe}$ 에 대한 농 도분포상태는 전자탐침미소분석기(EPMA)를 사용 하여 분석하였다.

2.4 질화층의 경도시험

질화처리 후 각 시험편에 대한 경도는 $100 \mathrm{gf} / 15 \mathrm{sec}$ 조건으로 비커스경도기를 이용하였는 데, 표면경도 및 단면경도는 다이아몬드 압입자로, 화합물층은 Knoop 압입자를 이용하여 측정하였다. 또 표면의 질화충으로부터 내부로의 단면경도분포 는 압자에 의한 압흔의 끝부분이 최대한 화합물충 의 표면에 근접하도록 하여 약 20 m의 간격으로 측정하였고, 확산충에서는 대부분 $30 \sim 40 \mu \mathrm{~m}$ 의 간격 으로 모재까지 측정하였다.

2.5 내마모시험

마모시험은 오고시(Ogoshi)식 마모시험기를 사 용, 대기중에서 시험편의 건조마찰에 의한 마모혼 적의 폭으로부터 마모체적을 구하고, 그것을 하중 과 마찰저리로 나눈 비마모 (specific wear)량으로 내마모성을 평가하였다. 이때 마모시헙의 조전으로 는 최종하중 2 Kg , 마찰거리 100 m 로 하였으며, 마 찰속도는 $2 \mathrm{~m} / \mathrm{sec}$ 로 일정하게 하였다.

3. 실헙결과 및 고찰

3.1 질화충의 미세조직 및 생성상

질화처리된 시료의 경화충은 화합물충과 확산충

으로 구성되는데, 가스질화처리시에는 화합물충 생 성제어가 어립지만 플라즈마질화시에는 처리조건 을 달리함으로서 경화충내의 화합물충올 제어할 수 있다1․

Fig. 1은 플라즈마 질화 및 침질탄화처리한 시편 의 단면조직올 나타낸 것으로 두 시편 공히 표면 의 백색화합물충과 내부의 확산충으로 구성되어 있음을 알 수 있다. 화합물충은 순철의 경우에는 치밀한 $\boldsymbol{\gamma}^{\prime}-\mathrm{FeAN}$ 만 형성되지만 처리온도에 따라 ε -$\mathrm{Fe}_{2}-\mathrm{N}$ 이 형성된다. 또한 시편의 탄소함량과 흔합 가스 중에 첨가된 탄소량에 따라서도 생성상의 조 직 및 성장속도에 많은 영향을 미친다. 이는 Fig. 2 의 XRD 결과에서도 알 수 있으며 각 시편의 탄소 함랑에 따른 화합물충의 생성상을 Table 2에 종합 정리 하였다. 또한, 화합물층의 두께는 약 7-15 $\mu \mathrm{m}$ 였 으며 탄소함량이 높을수록 그 두께는 더 증가된 것을 알 수 있다.

이러한 결과는 Y. Sun과 T. Bell ${ }^{18)}$ 등이 실험한 결과인 탄소함량의 증가에 따라 $\varepsilon-\mathrm{Fe}_{2}-\mathrm{N}$ 상 및 두 께가 증가한다는 결과와도 잘 일치함올 알 수 있 다. 한편, 화합물충에서 높은 농도의 질소는 내부 로 확산되며 에너지적으로 유리한 우선성장방향으 로 성장하여 침상형태로 급속히 형성되는데 ${ }^{(2)}$, 탄 소함량에 의존하는 확산충의 조직은 Fig. 1 에서 알 수 있듯이 침상의 $\boldsymbol{\gamma}^{\prime}-\mathrm{Fe}_{4} \mathrm{~N}$ 과 일부 $\boldsymbol{a}^{\prime \prime}-\mathrm{Fe}_{6} \mathrm{~N}_{2}$ 석출 물이 페라이트 입내에 잘 나타나 있다. 그러나 탄 소함량이 높을 경우에는 이러한 침상의 석출물들 이 잘 보이지 않음을 알 수 있는데, 이것은 FexC 상 이 많이 형성되어 확산충에서 확산된 질소가 감추 어지기 때문 ${ }^{19)}$ 으로 생각된다.
Fig, 3 의 a 및 b 는 SM 45 C 강의 질화 및 침질탄화 한 시편 표면에서 내부쪽으로 N, Fe 및 C 의 분포 를 조사한 EPMA 분석 결과로서, 표면부근의 화 합물충이 형성된 부분에서 질소가 집적되어 있음 을 알 수 있고 탄소의 경우는 확산층에서 상대적 으로 회절강도가 낮은 부분과 대체로 유사한 X-선 강도를 나타내고 있다. 이러한 경향은 표면부근에 서 화합물충이 형성되면서 Fe 및 C 의 양이 상대적

Fig．1．Cross sectional view of carbon steels（a，b ；SM20C，c，d ：SM55C） plasma nitrided（ a, c ）and nitrocarburized（b，d）

으로 저하하였음을 의미한다．이러한 결과는 XRD 결과와도 잘 일치함을 알 수 있다．

나타내지는 않았으나 질화물의 미세조직 및 생 성상에 대한 상세한 검토를 위하여 TEM 분석한

결과에서도 질화처리한 SM 20 C 의 회절패턴에서 FCC 구조의 $\boldsymbol{\gamma}^{\prime}-\mathrm{Fe}_{4} \mathrm{~N}$ 이 확인되었으며，미세조직 의 크기는 $1 \mu \mathrm{~m}$ 이하의 대단히 작은 입자로 구성되 어 있고 일부에서는 다랑의 전위가 생성되어 있음

Table 2．Identified phases and its intensities on surface of compound layers of the materials treated by nitriding and nitrocaburizing

Materials	Identified plase and its intensity on surface of nitrided layer			
	Nitriding		Nitrocaburixing	
	r＇－FeaN	$\varepsilon-\mathrm{Fez}_{-3} \mathrm{~N}$	\％＇－FedN	E－Pea－sN（CN）
SMEOC	\bigcirc	\bigcirc	（	－
SMESC	\bigcirc	O	\times	0
SMM5C	－	10	\times	－
SML5 5 C	－	0	\times	－

＊obecrved ： very strong， strong， © ；weak，O ；very weak，\times ；Nat observed

170/플라즈마질화 및 침질탄화처리한 탄소강의 경도와 내마모특성

Fig. 2; X-ray diffraction patterns from the surface of carbon steels plasma nitrided and nitrocarburized

이 관찰되었다 ${ }^{16}$.
또한, 침질탄화 처리한 SM 20 C 의 회절패턴은 이 중회절(double diffraction)의 헝태로서 HCP 구조의 $\varepsilon-\mathrm{Fe}_{2-3}(\mathrm{CN})$ 과 FCC 구조의 $\boldsymbol{\gamma}^{\prime}-\mathrm{Fe} N$ 이 혼합되어 있음이 확인(16)되었다. 이 결과 또한 XRD 결과와도 잘 일치함을 알 수 있었다.

3.2 경도변화

Table 3 은 미처리재와 질화처리한 시편의 표면

경도에 대한 평균값과 표면경화율을 나타내었다. 표면경화율은 질화처리재의 표면경도(HvN \& Hvs)에 대한 미처리재의 표면경도(HvB)의 비로 계 산한 것이다. 표에서 나타낸 것과 같이 미처리재 의 경우 탄소함랑이 중가할수록 경도값은 증가하 며, 질화처리시 역시 탄소함량이 높을수록 표면경 도는 증가함을 Fig. 4의 결과로 알 수 있다. 이와 같은 이유는 기지내의 탄소 및 혼합가스중의 탄 소함량이 화합물충내의 탄소고용과 관계가 있으며

Table 3.Surface hardness and hardening ratio of the materials before and after nitriding/nitrocarburizing

Materials	Non-treat. (Hyb)	Nitriding		Nitrocaburizing	
		Harcimess (HIVN)	Hardening ratio ($\mathrm{HVN}_{\mathrm{N}} / \mathrm{HvB}_{\mathrm{V}}$)	Hardnesss (Hivs)	Hardening ratio ($\mathrm{H}_{\mathrm{V}} / \mathrm{H}_{\mathrm{VB}}$)
SM20C	164	550	3.35	717	4.37
SM35C	197	611	3.10	736	3.74
SM45C	231	647	2.80	748	3.24
SM55C	259	675	2.61	750	2.90

Fig．3．EPMA line profile of Fe, N and C near surface on cross－section of SM45C steel plasma nitrided（a）and nitrocarburized（b）

Fig．4．Effect of carbon content on surface hardness in carbon steels after nitriding and nitrocarburizing

Fig．5．Hardness distribution on cross－ section of plasma nitrided and nitrocarburized SM45C

탄소농도가 증가할수록 $\varepsilon-\mathrm{Fe}_{2-3} \mathrm{~N}$ 상이 중가하여 경도가 증가된 것으로 사료된다．즉 $\mathrm{Fe}-\mathrm{N}-\mathrm{C} 3$ 원계 상태도에서 살펴보면 $\boldsymbol{\varepsilon}-\mathrm{Fe}-\mathrm{zN}$ 상이 고용할 수 있 는 탄소농도는 $500^{\circ} \mathrm{C}$ 에서 $4.1 \mathrm{wt} \%, 600^{\circ} \mathrm{C}$ 에서 3.2 $\mathrm{wt} \%$ 인 반면， $\boldsymbol{\gamma}^{\prime}$－FeaN상이 고용할 수 있는 탄소 농도는 $500 \sim 600^{\circ} \mathrm{C}$ 범위에서 $0.2 \mathrm{wt} \%$ 로 상당히 적 은 것을 알 수 있는데 이는 탄소가 ε－ $\mathrm{Fe}_{2}-3 \mathrm{~N}$ 상의 형성을 촉진시키는 원소이기 때문이다 ${ }^{44,18)}$ ．ε 상의 형성이 증가되면 경도가 증가하는 이유는 ε 상은 HCP 구조이고 경도가 높아 소성변형이 적고 내식 성이 높은 반면， $\boldsymbol{\gamma}^{\prime}$ 상은 탕보다 우수한 연성을 갖는 질화물의 특성때문1ㅣㅇㅔ 탄소합랑이 높을수록 경도가 증가되는 것으로 사료된다．

Fig．5는 질화 및 침질탄화 처리한 SM 45 C 강의 경도분포를 대표적으로 나타낸 것으로서 질소의 농도가 높은 표면에서는 $\boldsymbol{\gamma}^{\prime}$ 상과 ε 상의 화합물충이 형성되어 경도가 높으며 표면충에 집적된 여분의 질소는 내부로 확산되어지며 확산충에서 경도는 점점 감소함을 알 수 있다．

한편，Fig． 5 에서 알 수 있둣이 확산충의 두께는

Fig. 6. Relation between surface hardness and specific wear of carbon steels beforeand after nitriding/ nitrocarburizing

Fig. 7. Effect of carbon content on specific wear of carbon steels before and after nitriding/nitrocarburizing

침질탄화처리 보다 질화처리한 경우가 더 큰 것을 알 수 있다. 이는 질화처리시 압력의 영향에 기인 한 것으로 생각된다. 즉 플라즈마 질화시 가스압력 이 최적조건보다 낮으면 음극표면에서 분리되는 철원자의 평귱자유행로(mean free path)가 길어져 플라즈마내에서 질화물을 형성할 기회가 적어 질 화충이 성장하지 못하며, 압력이 높으면 철원자의 평균자유행로가 짧아져 질소가스가 이온화될 확률 이 적어지므로 질화물이 강표면에 홉착되는 속도 가 늦어져 질화층의 두께가 감소한다. 그러므로 질 화처리에서 가스압력은 처리물의 형상에 따라 적 절하게 변화시켜야 한다 ${ }^{11}$.

3.3 내마모성의 변화

Fig. 6 은 마모시험의 결과를 나타낸 것으로 표면 경도와 비마모량과의 관계를 나타내었다. 미처리재 의 경우 경도가 높을수록 비마모량 값이 낮으며, 질화 및 침질탄화처리재의 경우 미처리재에 비하 여 매우 높은 경도를 나타냄에도 불구하고 경도값 에 관계없이 일정하고 낮은 비마모량을 나타내며, 질화처리재는 표면경도값이 낮은데도 비마모량이 유사하게 나타났다. 이것은 질화처리시 생성되는 질화물이 탄소함량의 증가에 따라 주상인 $\boldsymbol{\gamma}^{\prime}-\mathrm{Fe}_{4} \mathrm{~N}$ 과 $\varepsilon-\mathrm{Fe}_{2}-3 \mathrm{~N}$ 의 혼합상으로 되며 이들 흔합상 경계 에 고유의 응력이 존재하기 때문에 내마모성이 증 가되는 반면 ${ }^{5}$, 침질탄화처리시는 $\varepsilon-\mathrm{Fe} 2-3(\mathrm{CN})$ 의 단 상이 생성되어 내마모성이 낮을 것으로예측되지만 탄소에 의한 격자스트레인의 증가와.5.5) 화합물층 의 두께가 질화처리재보다 크기 때문에 비마모량 에 따른 내마모성의 차이는 없는 것으로 생각된다.

Fig. 7은 비마모량에 미치는 탄소함량의 영향을 나타낸 것으로 미처리재는 탄소함량이 증가할수록 비마모량이 직선적으로 감소하는 경향을 나타내고 있는데, 이것은 탄소함량이 많을수록 마모에 대한 저항이 크다는 것을 의미하고 있다. 한편 질화처리 재의 경우는 Fig. 6 의 경도와 비마모량과의 관계에서 와 같이 탄소함량에 관계없이 전체적으로 낮은 일정 한 값을 나타내는 경향을 보이고 있음을 알 수 있다.

4．결 론

탄소함랑이 $0.2 \sim 0.55 \mathrm{wt} \% \mathrm{C}$ 의 범위인 시판용 탄 소강을 $\mathrm{H}_{2}+\mathrm{N}_{2}$ 및 $\mathrm{H}_{2}+\mathrm{N}_{2}+\mathrm{CO}$ 의 혼합가스를 사용 하여 $550^{\circ} \mathrm{C}$ 에서 $21.6 \mathrm{Ks}(6 \mathrm{hrs})$ 로 플라즈마 질화 및 침질탄화처리시 경도 및 내마모특성에 대하여 조 사하였으며，이에 미치는 질화층의 미세조직과 표 면 생성상을 검토한 결과 다음과 같은 결론을 얻 었다．

1）질화층은 화합물충과 확산충으로 구성 되었 으며，화합물충 두께는 약 $7 \sim 15 \mathrm{~mm}$ 정도였다．화합 물충의 생성상은 질화의 경우 탄소함량이 증가할 수록 주상인 $\boldsymbol{\gamma}^{\prime}-\mathrm{Fe} \mathrm{HN}$ 과 $\varepsilon-\mathrm{Fe}_{2}-\mathrm{JN}$ 상이 혼합되어 나 타났으며，침질탄화의 경우는 $\varepsilon-\mathrm{Fe}_{2-3}(\mathrm{CN})$ 이 주상 으로 나타났다．

2）표면경도는 미처리재에 비하여 크게 증가하 였으며 재료 및 가스중의 탄소함량이 높을수록 높 은 경향을 나타내어 침질탄화의 경우 질화처리보 다 약 Hvl 00 정도 높게 나타났다．3）질화 및 침질 탄화처리에 의하여 비마모량은현저히 감소하여 내 마모성이 크게 향상되었으며，미처리재에 대한 경 도와 비마모량의 관계는 상관성을 나타내었으나， 처리재의 경우 경도에 크게 관계없이 전체적으로 비마모량이 낮은 일정한 값을 나타내었다．

참고문헌

1．H．S．Park，C．Y．Kang and K．Nakada ：J．of KWS，14－2，（1996），PP．1～9

2．赤澤 5 ：瀻と鋼，49－10，（1963），PP． 1494
3．H．Bennek ：Arch Eisenhuttenw，18，（1944）， PP． 61

4．H．Knappel ：Stahl and Eisen，78，（1958），PP． 1879
5．山中ク彦：イオン窒化法，日刊工業新聞社， （1984），PP．5～62

6．喜多清，苧野兵衛，中村廣5：日本金屬學會誌， 38－9，（1974），PP． 854
7．苧野兵衞，岡本康治，松田昭三 5：日本金屬學會誌，41－3，（1977），PP． 225
8．N．Dingremont，E．Bergmann etal ：Surface and Coatings Technology，76－77，（1995），PP． 218 ～224
9．曾根 5 ：熱處理，24－6，（1984），PP． 316
10．枝村瑞郎，牧村實 5 ：日本金屬學合誌，42－10， （1978），PP．936～942
11．李在植：蔚山大學校 博士學位論文，（1997）
12．H．S．Park，H．J．Cho and K．Nakada etal ：J． of KWS，16－1，（1998），PP．88～97
13．松田稫久，中田一博 $5: ~$ 溶接學會論文集，9－2， （1991），PP．311～317
14．斯求桓，金明鎬，朴注承 等 ：J．Kor．Inst．Met． \＆Mater，36－9，（1998），PP． 1475
15．イオン窒化研究會編 ：イオンノプラズマ窒化法，日本電子工業株式會剈，（1992），PP．63～121
16．金武吉 ：韓國海洋大學校 博士學位論文， （1999），PP． 47
17．市井一男，藤村侯夫 ：高㴿孝夫，熱處理，25－4， （1985），PP． 191
18．Y．Sun，T Bell ：Materials Science and Eng．， A140（1991）PP．419～434

19．K．T．Rie ：Plasma surface Eng．，1，（1989），PP． 201～218

20．F．Mahboubi，M．Samandi，D．Dunne，A．Bloyce and T ．Bell ：Surface and coating Technology， 71，（1995），PP． 135

