Browse > Article
http://dx.doi.org/10.4191/KCERS.2006.43.8.469

Effect of Cr2O3 Content on Densification and Microstructural Evolution of the Al2O3-Polycrystalline and Its Correlation with Toughness  

Seo, Mi-Young (Institute of Advanced Ceramics for Semiconductor in BIEMT CO., LTD)
Kim, Hee-Seung (Institute of Advanced Ceramics for Semiconductor in BIEMT CO., LTD)
Kim, Ik-Jin (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University)
Publication Information
Abstract
The effects of $Cr_2O_3$ on the microstructural evolution and mechanical properties of $Al_2O_3$ polycrystalline were investigated. The microstructure of $Al_2O_3-Cr_2O_3$ composites (ruby) was carefully controlled in order to obtain dense and fine-grained ceramics, thereby improving their properties and reliability with respect to numerous applications related to semiconductor bonding technology. Ruby composites were produced by Ceramic Injection Molding (CIM) technology. Room temperature strength, hardness, Young's modulus and toughness were determined, as well as surface strengthening induced by thermal treatment and production of a fine-grained homogenous microstructure.
Keywords
$Al_2O_3-Cr_2O_3$ composites; Ruby; Microstructure; Injection molding; Toughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. A. Handwerker, P. A. Morris, and R. L. Coble, 'Effect of Chemical in Homogeneities on Grain Growth and Microstructure in Alumina,' J. Am. Ceram. Soc., 72 [1] 130-36 (1989)   DOI   ScienceOn
2 D. H. Riu, Y. M. Kong, and H. E. Kim, 'Effect of $Cr_2O_3$ Addition on Microstructural Evolution and Mechanical Properties of $Al_2O_3$,' J. Eur. Ceram. Soc., 20 [3] 1475-81 (2000)   DOI   ScienceOn
3 H. Song and R. L. Coble, 'Origin and Growth Kinetics of Platelike Abnormal Grains in Liquid-Phase-Sintered Alumina,' J. Am. Ceram. Soc., 73 [7] 2077-85 (1990)   DOI
4 R. C. Bradt, '$Cr_2O_3$ Solid Solution Hardening of $Al_2O_3$,' J. Am. Ceram. Soc., 50 [1] 54-5 (1967)   DOI
5 R. F. Cook, C. J. Fairbanks, B. R. Lawn, and Y. W. Mai, 'Crack Resistance by Interfacial Bridging : Its Role in Determining Strength Characterization,' J. Mater. Res., 2 [3] 345-56 (1987)   DOI
6 J. Roedel and A. M. Glaeser, 'Anisotropy of Grain Growth in Alumina,' J. Am. Ceram. Soc., 73 [11] 3292-301 (1990)   DOI
7 E. Doerre and H. Huebner, 'Alumina-Processing, Properties, and Applications,' pp. 216-82, Springer-Verlag, Berlin, 1984
8 G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, 'A Critical Evalution of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method,' J. Am. Ceram. Soc., 64 [9] 539-43 (1981)   DOI
9 A. Harabi and T. J. Davis, 'Mechanical Properties of Sintered Alumina-Chromia Refractoies,' Br. Ceram. Trans. J., 91 71-6 (1992)
10 H. T. Lim and D. S. Lim, 'Effect of Molding Temperature and Debinding Conditions on Fabrication of Alumina Component by Injection Molding(in Korean),' J. Kor. Ceram. Soc., 32 [5] 559-66 (1995)   과학기술학회마을
11 W. A. Kaysser and M. Sprissler, 'Effect of a Liquid Phase on the Morphology of Grain Growth in Alumina,' J. Am. Ceram. Soc., 70 [5] 339-43 (1987)   DOI   ScienceOn