• Title/Summary/Keyword: microstructure hardness

Search Result 1,339, Processing Time 0.026 seconds

Effect of Freezing and Thawing Condition on the Physical Characteristics of Blanched Bean Sprouts as Home Meal Replacement (냉.해동 조건에 따른 간편편이식 콩나물의 물리적 품질 변화)

  • Jang, Min-Young;Jung, You-Kyoung;Min, Sang-Gi;Cho, Eun-Kyung;Lee, Mi-Yeon
    • Culinary science and hospitality research
    • /
    • v.20 no.6
    • /
    • pp.235-244
    • /
    • 2014
  • The purpose of this study was to investigate the effect of freezing and thawing rate on the physical properties of soybean sprouts to improve the quality of processed soybean sprouts during distribution and storage. Cooked soybean sprouts were frozen by air-blast freezing (ABF) system at $-45^{\circ}C$ or natural air convection freezing (NCF) system at $-24^{\circ}C$, then thawed using microwave oven by varying output power (0, 400, 800 and 1,000 W) until $75^{\circ}C$. The quality of soybean sprouts was measured by the water content, hardness and springiness. In addition, the internal microstructure of soybean sprouts was observed by optical microscope. For results, water content of soybean sprouts thawed by 1,000 W in a microwave showed the lowest value after natural air convection freezing. Springiness of soybean sprouts thawed by all amounts of output power was decreased in comparison with control. Hardness was increased only in soybean sprouts thawed by 1,000 W after air-blast freezing. However the gaps between springiness and hardness were relatively small with control at 1,000 W thawing, after air-blast freezing. Internal microstructure of the soybean sprouts was more damaged as freezing and thawing time were increased. In conclusion, high freezing and thawing rate might improves the quality of soy bean sprout, and IQF freezing and 1,000 W of microwave thawing appears to be the optimum condition for frozen HMR production. From the results freezing and thawing process parameters might can be use as quality control parameters as various type of sprout products processing.

Effect of Heat Treatments on the Microstructures and Mechanical Properties of OCTG (유정용 강관의 미세조직 및 기계적 성질에 미치는 열처리의 영향)

  • Choi, Jong-Min;Noh, Sang-Woo;Yi, Won-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.252-261
    • /
    • 2017
  • This study examined the effect of heat treatment on the microstructure and mechanical properties of J55 line pipe steel. The experiments were carried out at under the following various conditions: austenization temperature($880^{\circ}C$, $910^{\circ}C$, $940^{\circ}C$), cooling methods(water quenching, oil quenching) and tempering temperature(none, $550^{\circ}C$, $650^{\circ}C$). The phase diagram and CCT curve were simulated based on the chemical composition of J55 steel to predict the microstructures. In the results, A1, A3 temperature decreased. As the austenization temperature increased, existing austenite grains grew exponentially which seriously degraded their mechanical properties. Various microstructures, including martensite, bainite, ferrite, and pearlite, developed in accordance with the heat treatments and were closely correlated with hardness, tensile strength and toughness. Martensite was formed after water quenching, but bainite and ferrite appeared after oil quenching. FeC precipitation formed and coarsened during tempering, which improved their toughness.

3 Dimensional Changes of Bedrock Surface with Physical Modelling of Abrasion (마식에 의한 기반암면의 표면 변화에 대한 실험 연구)

  • Kim, Jong-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.506-525
    • /
    • 2007
  • Incision into bedrock channel is the primary control of landform evolution, but research into bedrock incision process stagnated for long time. Due to the scaling problem of the application of results from flume studies to bedrock channel, there is a strong need to simulate the bedrock incision process with more realistic models. As a part of investigation into controls of bedrock channel incision, three-dimensional changes of rock surface with abrasion was investigated with physical modelling. 18 rock plates were abraded with various sediment particle size and sediment load and abraded surfaces of the plates were scanned with high resolution 3-D scanner. To identify the spatial pattern of erosion of the rock plates, various methods were used. There was no synthetic or holistic method that showed all features of bedrock plate produced by abrasion, so each plate was analyzed using some available methods. Contour maps, shaded relief maps and profiles show that abrasion concentrated on the centre of plate (cross profile) and upstream and downstream edges (longitudinal profile) and eroded area extended inwards. It also found that the cracks and boundaries of forming materials easily eroded than other parts. Changing patterns of surface roughness were investigated with profiles, regression analysis and spectral analysis. Majority of plates showed decrease in small-scale roughness, but it depends on microstructures of the plates rather than general hardness or other factors. SEM inspection results supported this idea.

Effects of In Situ YAG on Properties of the Pressurless Annealed Sic-$TiB_2$ Electroconductive Ceramic Composites (무가압 어닐드한 Sic-$TiB_2$ 전도성 복합체의 특성에 미치는 In Situ YAG의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.808-815
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at 1650[$^{\circ}C$] for 4 hours. The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), ${\beta}$-SiC(3C), $TiB_2$, and In Situ YAG($Al_2Y_3O_{12}$). The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. There is another reason which pressureless annealed temperature 1650[$^{\circ}C$] is lower $300{\sim}450[^{\circ}C]$ than applied pressure sintering temperature $1950{\sim}2100[^{\circ}C]$. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[Mpa], 54.60[Gpa] and 2.84[Gpa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of 0.0117[${\Omega}{\cdot}cm$] for 16[wt%] $Al_2O_3+Y_2O_3$ additives at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from $25^{\circ}C$ to 700[$^{\circ}C$]. The resistance temperature coefficient of composite showed the lowest value of $-2.3{\times}10^{-3}[^{\circ}C]^{-1}$ for 16[wt%] additives in the temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$].

A Feasibility Study on the Application of Self-Shielded Flux Cored Arc Welding Process for the On-Site Steel Bridge Box Fabrication (교량용 강재 박스의 현장 제조시 셀프실드 플럭스코어드 아크용접의 적용 타당성에 대한 연구)

  • Hwang, Yong-Hwa;Koh, Jin-Hyun;Oh, Se-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.122-128
    • /
    • 2005
  • A feasibility study on the application of self?shielded flux cored arc welding to the on-site SM520 steel bridge box fabrication for express trains and high way construction instead of gas-shield flux cored arc welding was conducted in terms of weld soundness, mechanical properties, toughness and microstructures. All welded specimens made with the self?shielded FCAW process were tested by magnetic particle and ultrasonic techniques and they were found to be sound. All multipass weld specimens made with both self-shielded and gas-shielded FCAW processes showed yield and tensile strengths of $462{\sim}549\;MPa$ and $548{\sim}640\;MPa$, respectively. The impact values of Charpy V-Notch weld specimens also met with the required value of 40J at $-20^{\circ}C$. The hardness values of the top area of weldments were higher than those of the bottom area because of higher residual stresses in the near surface. It was found that welding characteristics of SM520 steel by the on-site welding conditions with self-shielded FCAW showed almost equivalent to those by gas-shielded FCAW in terms of sound welds, mechanical properties and microstructure.

  • PDF

Microstructure Analysis of Rabbit and Chicken Femurs by Light Microscopy and Transmission Electron Microscopy (광학현미경과 투과전자현미경을 이용한 토끼와 닭 대퇴골의 미세구조 분석)

  • Kim, Chang-Yeon;Kim, Eun-Kyung;Jeon, Tae-Hoon;Nam, Seung-Won;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.40 no.3
    • /
    • pp.155-162
    • /
    • 2010
  • Bone is a hierarchically structured composite material which has been well studied by the materials engineering community because of its unique structure and mechanical properties. Bone is a laminated organic-inorganic composite composed of primarily hydroxyapatite, collagen and water. The main mineral that gives bone's hardness is calcium phosphate, which is also known as hydroxyapatite. Light microscopy (LM) and transmission electron microscopy (TEM) were used to study the structure of femurs from chicken and rabbit. The elemental analysis was used to search variation in the distribution of calcium, potassium and oxygen in the femur. Current investigation focused on two structural scales: micro scale (arrangement of compact bone) and nano scale (collagen fibril and apatite crystals). At micro scale, distinct difference was found in microstructures of chicken femur and rabbit femur. At nano scale, we analyzed the shape and size of apatite crystals and the arrangement of collagen fibril. Consequently, femurs of chicken and rabbit had very similar chemical property and structures at nano scale despite of their different species.

A Study on Microstructure and Mechanical Properties of Modified 9Cr-1Mo and 9Cr-0.5Mo-2W Steels for nuclear Power Plant (원자력용 개량 9Cr-1Mo 및 9Cr-0.5Mo-2W 강의 미세조직과 기계적 특성 연구)

  • Kim, Seong-Ho;Song, Byeong-Jun;Han, Chang-Seok;Guk, Il-Hyeon;Ryu, U-Seok
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1137-1143
    • /
    • 1999
  • Microstructure and mechanical properties of Mod.9Cr-1Mo and W added 9Cr-0.5Mo2W steels were investigated for liquid metal reactor (LMR) heat exchange tube. The tempering temperatures at which cell structure was formed were $700^{\circ}C$ for Mod.9Cr-1Mo steel and $750^{\circ}C$ for W added 9Cr0.5Mo-2W steel. indicating the recovery of dislocation was delayed by the addition of W. 9Cr-0.5Mo-2W steel had the same kinds of precipitates with Mod.9Cr-1Mo steel, but the W was included in the precipitates in 9Cr-0.5Mo-2W steel. Micro-hardness and ultimate tensile strength of 9Cr-0.5Mo-2W steel were higher than those of Mod.9Cr-1Mo steel. The impact property of Mod.9Cr-1Mo steel was superior to that of 9Cr-0.5Mo-2W steel.

  • PDF

Effects of Cooking and Drying Methods on the Taste Component and Microstructure of Shrimp (새우의 맛성분과 미세구조에 미치는 가열 및 건조방법의 영향)

  • Kim, Hyun-Ku;Chang, Young-Sang;Shin, Hyo-Sun
    • Applied Biological Chemistry
    • /
    • v.32 no.3
    • /
    • pp.278-285
    • /
    • 1989
  • Effects of cooking and drying methods on the taste component and microstructure of shrimp, Metapenaeus joyneri, were investigated. The nucleotides and their related compounds of fresh shirmp such as ATP, ADP, AMP, IMP, inosine and hypoxanthine were detected. AMP was detected as a trace amount in fresh shrimp, however, it increased up to $23.5{\sim}45.7{\mu}$ moles with cooking and drying due to the decomposition of ATP and ADP to AMP during cooking and drying. The major component of the free amino acids of fresh shrimp was arginine followed by glycine, lysine, proline and alanine. These free amino acids contents were 70% of the total free amino acids. One hundred grams of fresh shrimp contained 1,198mg (dry basis) of the total free amino acids. However, for hot air and freeze dried cooked shrimps it was decreased down to 342mg (dry basis) and 503mg (dry basis), respectively. It might be due to the dissolution of soluble amino acids during cooking. Hot air-and freeze-dried fresh shrimps was higher in hardness and brittleness but lower in cohesiveness and gumminess than hot air-and freeze-dried ones with boiling and microwave heating. Freeze dried shrimp had softer myofibril texture than hot air dried one. At the same time, more dense and multiporous structure in the tissue could be obtained from the hot air and freeze drying, respectively, after microwave heating of shrimps.

  • PDF

A Study on the Comparison of Brazed Joint of Zircaloy-4 with PVD-Be and Zr-Be Amorphous alloys as Filler Metals (PVD-Be와 비정질 Zr-Be 합금을 용가재로 사용한 Zircaloy-4의 브레이징 접합부의 비교 연구)

  • Hwang, Yong-Hwa;Kim, Jae-Yong;Lee, Hyung-Kwon;Koh, Jin-Hyun;Oh, Se-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 2006
  • Brazing is an important manufacturing process in the fabrication of Heavy Water Reactor fuel rods, in which bearing and spacer pads are joined to Zircaloy-4 cladding tubes. The physical vapor deposition(PVD) technique is currently used to deposit metallic Be on the surfaces of pads as a filler metal. Amorphous Zr-Be binary alloys which are manufactured by rapid solidification process are under developing to substitute the conventional PVD-Be coating. In the present study, brazed joint with PVD and amorphous alloys of $Zr_{1-x}Be_{x}(0.3{\le}x{\le}0.5)$ as filler metals are compared by mechanism, microstructure and hardness. The thickness of brazed joint with amorphous alloys became much smaller than that of PVD-Be. The erosion of base metal did not occur in the brazed joint with amorphous alloys. The brazing mechanism for PVD-Be seems to be Be diffusion into Zr-4 with capillary action resulting from eutectic reaction while that for amorphous alloys are associated with the liquid phase formation in the brazed joint. The brazed joint microstructure with PVD-Be consists of dendrite while that with amorphous alloys is globular. The $Zr_{0.7}Be_{0.3}$ alloy shows the smooth interface with little erosion in the base metal and is recommended a most suitable brazing filler metal for Zircaloy-4.

  • PDF

Mechanical Characteristics and Microstructures of Hypereutectic Al-17Si-5Fe Extruded Alloys Prepared by Rapid Solidification Process (급속응고법으로 제조한 과공정 Al-17Si-5Fe 합금 압출재의 미세조직 및 기계적 특성)

  • KIM, Tae-Jun;LEE, Se-dong;BECK, Ah-Ruem;KIM, Duck-Hyun;LIM, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.39 no.2
    • /
    • pp.26-31
    • /
    • 2019
  • In this study, the mechanical characteristics and microstructure of hypereutectic Al-17Si-5Fe extruded alloys prepared by a rapid solidification process (RSP) were investigated. The hypereutectic Al alloy was fabricated by means of RSP and permanent casting. For RSP, the Al alloy melted at $920^{\circ}C$, cooling the specimens at a rate of $10^6^{\circ}C/s$ when the RSP was used, thus allowing the refining of primary Si particles more than when using permanent casting, at a rate of about 91%. We tested an extrusion RSP billet and a permanent-cast billet. Before the hot-extrusion process, heating to $450^{\circ}C$ took place for one hour. The samples were then hotextruded with a condition of extrusion ratio of 27 and a ram speed of 0.5 mm/s. Microstructural analyses of the extruded RSP method and the permanent casting method were carried out with OM and SEM-EDS mapping. The mechanical properties in both cases were evaluated by Vickers micro-hardness, wear resistance and tensile tests. It was found that when hypereutectic Al-17Si-5Fe alloys were fabricated by a rapid solidification method, it becomes possible to refine Si and intermetallic compounds. During the preparation of the hypereutectic Al-17Si-5Fe alloy by the rapid solidification method, the pressure of the melting crucible was low, and at faster drum speeds, smaller grain alloy flakes could be produced. Hot extrusion of the hypereutectic Al-17Si-5Fe alloy during the rapid solidification method required higher pressure levels than hot extrusion of the permanent mold-casted alloy. However, it was possible to produce an extruded material with a better surface than that of the hot extruded material processed by permanent mold casting.