3 Dimensional Changes of Bedrock Surface with Physical Modelling of Abrasion

마식에 의한 기반암면의 표면 변화에 대한 실험 연구

  • Kim, Jong-Yeon (Planning and Management Office, Presidential Commission on Sustainable Development, Republic of Korea)
  • 김종연 (대통령자문 지속가능발전위원회 기획운영실)
  • Published : 2007.09.30

Abstract

Incision into bedrock channel is the primary control of landform evolution, but research into bedrock incision process stagnated for long time. Due to the scaling problem of the application of results from flume studies to bedrock channel, there is a strong need to simulate the bedrock incision process with more realistic models. As a part of investigation into controls of bedrock channel incision, three-dimensional changes of rock surface with abrasion was investigated with physical modelling. 18 rock plates were abraded with various sediment particle size and sediment load and abraded surfaces of the plates were scanned with high resolution 3-D scanner. To identify the spatial pattern of erosion of the rock plates, various methods were used. There was no synthetic or holistic method that showed all features of bedrock plate produced by abrasion, so each plate was analyzed using some available methods. Contour maps, shaded relief maps and profiles show that abrasion concentrated on the centre of plate (cross profile) and upstream and downstream edges (longitudinal profile) and eroded area extended inwards. It also found that the cracks and boundaries of forming materials easily eroded than other parts. Changing patterns of surface roughness were investigated with profiles, regression analysis and spectral analysis. Majority of plates showed decrease in small-scale roughness, but it depends on microstructures of the plates rather than general hardness or other factors. SEM inspection results supported this idea.

기반암 하상의 침식현상은 지형발달의 1차적인 통제 요소이다. 그러나 기반암 침식과정에 대한 연구는 오랜 시간 동안 지체되어 왔다. 이러한 지체는 실험하도에서의 결과를 기반암 하천에 적용시키는데 있어서의 스케일링 문제 등에 기인한다. 기반암 하상에 대한 침식 통제 변수에 대한 조사의 일환으로 마식과정에 대한 물리적 실험에서의 기반암면의 변화 과정이 연구되었다. 18개의 기반암 시료들이 다양한 퇴적물 양과 퇴적물 입자 크기에 의해서 마식되었다. 3차원적인 기반암면의 변화는 고해상도 3차원 스캐너를 이용하여 기록되었다. 기반암 시료의 표면 변화를 파악하기 위하여 다양한 방식을 사용하였으나, 거칠기의 변화와 기반암면의 전반적인 변화를 단일한 방식으로 나타낼 수 있는 방식은 파악되지 않았다. 음영기복도와 기복도에 의하면 마식은 횡단면 곡선상의 중심부와 종단면 곡선상의 상부와 하부 말단에서 시작되어 성장하는 것이 일반적인 경향으로 나타났다. 표면의 전반적인 형상에 있어서는 앞서 지적한 마식의 공간적 분포의 영향으로 종단면에 있어서는 평탄화가 나타났다. 횡단면의 경우 기울기가 증가하는 것이 우세하였다. 표면의 거칠기 정도는 일반적인 경향을 발견하기 어려웠으며, 일반적으로 추정되어진 마식에 따른 거칠기 감소가 나타나지는 않았으며, 암석에 따라서 서로 다른 결과가 나타났다. 주사전자현미경(SEM)을 이용한 분석에 의하면 기반암의 일반적인 특성보다는 조암 광물의 미세구조(microstructure)가 마식의 공간적인 유형과 거칠기 변화에 큰 영향을 미치는 것으로 나타났다.

Keywords

References

  1. Allen, J.R.L., 1971, Transverse erosional marks of mud and rock: Their physical basis and geological significance, Sedimentary Geology, 5, 167-385 https://doi.org/10.1016/0037-0738(71)90001-7
  2. Alman, D.E., Hawk, J.A., Tylczak, J.H., Dogan, C.P., and Wilson, R.D., 2001, Wear of iron-aluminide intermetallic-based alloys and composites by hard particles, Wear, 252, 875-884
  3. Anamalay, R.V., Kirk, T.B., and Panzera, D., 1995, Numerical descriptors for the analysis of wear surface using laser scanning confocal microscopy, Wear, 181, 771-776
  4. Bhushan, B., Gupta, B.K., and Azarian, M.H., 1995, Nanoindentation, microscratch, friction and wear studies of coatings for contact recording applications, Wear, 181-183, 743-758
  5. Bitter, J.G.A., 1963, A study of erosion phenomena: Part 2, Wear, 6, 196-190
  6. British Standard, 1998, Tests for Mechanical and Physical Properties of Aggregates Part 2: Method for the Determination of Resistance to Fragmentation: BS EN 1097-2:1998
  7. Bryan, K., 1935, Processes of formation of pediments at Granite Gap, New Mexico, Zeitschrift fur Geomorphologie, 9, 125-135
  8. Chae, B.G., Ichikawa, Y., Jeong, G.C., Seo, Y.S., and Kim, B.C., 2004, Roughness measurement of rock discontinuities using a confocal laser scanning microscope and the Fourier spectral analysis, Engineering Geology, 72,181-199 https://doi.org/10.1016/j.enggeo.2003.08.002
  9. Cho, Y-J, Koo, Y-P, and Jeon, J-H., 2002, Surface profile estimation by digital filtering for wear volume calculation. Wear, 252, 173-178 https://doi.org/10.1016/S0043-1648(01)00836-5
  10. Dogan, C.P. and Hawk, J.A., 1999, Role of composition and microstructure in the abrasive wear of highalumina ceramics, Wear, 225-229, 1050-1058
  11. Dogan, C.P. and Hawk, J.A., 1995, Effect of grain boundary glass composition and devitrification on the abrasive wear of Al2O3, Wear, 181-183, 129-137
  12. Dogan, C.P. and Hawk, J.A., 2001, Microstructure and abrasive wear in silicon nitride ceramics, Wear, 250, 256-263 https://doi.org/10.1016/S0043-1648(01)00649-4
  13. Dong, W.P. and Stout, K.J., 1995, An integrated approach to the characterization of surface wear 1: qualitative characterization, Wear, 181-183, 700-716
  14. Foley, M.G., 1980, Bedrock incision by streams, Geological Society of America Bulletin, 91 (part2), 2189-2213 https://doi.org/10.1130/GSAB-P2-91-2189
  15. Gahlin, R., Larker, R., and Jacobson, S., 1998, Wear volume and wear distribution and wear distribution of hydraulic motor cam rollers studied by a novel atomic microscope technique, Wear, 220, 1-8 https://doi.org/10.1016/S0043-1648(98)00218-X
  16. Gerrard, A.J., 1988, Rocks and Landforms, Unwin Hyman, London
  17. Gilbert, G.K., 1877, Report on the Geology of the Henry Mountains, Department of Interior, Washington
  18. Gregory, H.E., 1915, Note on the shape of pebbles, American Journal of Science, 39, 300-304 https://doi.org/10.2475/ajs.s4-39.231.300
  19. Hancock, G.S., Anderson, R.S., and Whipple, K.X., 1998, Beyond power: Bedrock river incision process and form. in Tinkler, K.J. and Wohl, E.E.(eds.), Rivers over Rock: Fluvial Processes in Bedrock Channels, American Geophysical Union, Washington, 35-60
  20. Henning, C. and Mewea, D., 1995, Measuring the deformation of crystalline materials due to the impact of eroding particles, Wear, 181-183, 790- 798
  21. Hjulstrom, F., 1935, Studies of the morphological activity of rivers as illustrated by the River Fyris, Bulletin of the Geological Institution of the University of Upsala, 25, 221-528
  22. Huq, M,Z, and Celis, J.P., 2002, Expressing wear rate in sliding contacts based on dissipated energy, Wear, 252, 375-383 https://doi.org/10.1016/S0043-1648(01)00867-5
  23. Hussainova, I., Kubarsepp, J., and Pirso, J., 2001, Mechanical properties and features of erosion of cermets, Wear, 250, 818-825 https://doi.org/10.1016/S0043-1648(01)00737-2
  24. Jain, S.C. and Kennedy, J.F., 1974, The spectral evolution of sedimentary bed forms, Journal of Fluid Mechanics, 63, 301-314 https://doi.org/10.1017/S0022112074001157
  25. Jenkins, G.M. and Watts, D.G., 1968, Spectral Analysis and Its Applications, Holden-Day, San Francisco
  26. Johnston, K., ver Hoef, J.M., Krivoruchko, K., and Lucas, N., 2001, Using ArcGIS Geostatistical Analyst, ESRI, Redland, California
  27. Keckler, D., 1997, Surfer for Windows: Version 6 User's Guide, Golden Software, Golden, Colorado
  28. Kim, J.Y., 2004, Controls over Bedrock Channel Incision, Unpublished Ph.D thesis, University of Glasgow
  29. Kokelaar, B. P. and Moore, I.D., 2006, Classical Area of British Geology: Glen Coe Caldera Volcano, Scotland, British Geological Survey, Nottingham
  30. Kuenen, Ph H., 1947, Water-faceted boulders, American Journal of Science, 245, 779-783 https://doi.org/10.2475/ajs.245.12.779
  31. Lee, A.G.G. and Rutter, E.H., 2004, Experimental rockon- rock friction wear: Application to subglacial abrasion, Journal of Geophysical Research, 109(B), doi:10.1029/2004JB003059
  32. Luguen, M., 1914, Le straige du lit fluvial, Annales de Geographie, 23-24, 385-393
  33. Maxon, J.H. and Campbell, I., 1935, Stream fluting and stream erosion, Journal of Geology, 43, 729-744 https://doi.org/10.1086/624364
  34. Maxon, J.H., 1940, Fluting and faceting of rock fragments, Journal of Geology, 48, 717-751 https://doi.org/10.1086/624925
  35. Mulla, D.J., 1988, Using geostatistics and spectral analysis to study spatial patterns in the topography of Southeastern Washington state, U.S.A., Earth Surface Processes and Landforms, 13, 389-405 https://doi.org/10.1002/esp.3290130505
  36. Nagihara, S., Mulligan, K.R., and Xiong, W., 2004, Use of a three-dimensional laser scanner to digitally capture the topography of sand dunes in high spatial resolution, Earth Surface Processes and Landforms, 29, 391-398 https://doi.org/10.1002/esp.1026
  37. Oka,Y.I., Nishimura, M., Nagahashi, K., and Matsumura, M., 2001, Control and evaluation of particle conditions in a sand erosion test facility, Wear, 250, 736-743 https://doi.org/10.1016/S0043-1648(01)00710-4
  38. Patton, S.T. and Bhushan, B., 1996, Micromechanical and tribological characterization of alternate pole tip materials for magnetic recording heads, Wear, 202, 99-109 https://doi.org/10.1016/S0043-1648(96)07261-4
  39. Percival, D.B. and Walden, A.T., 1993, Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, Cambridge University Press, Cambridge
  40. Richardson, K. and Carling, P.A., 2005, A Topology of Sculpted Forms in Open Bedrock Channels, American Society of America Special Paper, 392, Geological Society of America, Boulder, Colorado
  41. Robert, A. and Richards, K.S., 1988, On the modelling of sand bedforms using the semivariogram, Earth Surface Processes and Landforms, 13, 459-473 https://doi.org/10.1002/esp.3290130510
  42. Rosen, B.G., Ohlsson, R., and Thomas, T.R., 1996, Wear of cylinder bore microtopography, Wear, 198, 271-279 https://doi.org/10.1016/0043-1648(96)07207-9
  43. Shepherd, R.G. and Schumm, S.A., 1974, Experimental study of river incision, Geological Society of America Bulletin, 85, 257-268 https://doi.org/10.1130/0016-7606(1974)85<257:ESORI>2.0.CO;2
  44. Sklar, L.S. and Dietrich, W.E., 2001, Sediment and rock strength controls on river incision into bedrock, Geology, 29,1087-1090 https://doi.org/10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2
  45. Skopp, A., Woydt, M., and Habig, K.H., 1995, Tribological behaviour of silicon nitride materials under unlubricated sliding between 22C and 1000C, Wear, 181-183, 571-580
  46. Thompson, D. and Wohl, E.E., 1998, Flume experimentation and simulation of bedrock channel processes, in Tinkler, K.J. and Wohl, E.E.(eds.), Rivers over Rock: Fluvial Processes in Bedrock Channels, American Geophysical Union, Washington, 279-296
  47. Wang, W. and Scholz, C.H., 1994, Wear processes during frictional sliding of rock: A theoretical and experimental study, Journal of Geophysical Research, 99(B), 6789-6799 https://doi.org/10.1029/93JB02875
  48. Whipple, K.X., Anderson, R.S., and Hancock, G.S., 2000, River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Geological Society of America Bulletin, 112, 490-503 https://doi.org/10.1130/0016-7606(2000)112<0490:RIIBMA>2.3.CO;2
  49. Young, R.W., 1985, Waterfalls: form and process, in Bremmer, H.(ed.), Fluvial Geomorphology, Zeitschrift fur Geomorphologie Supplementband, 55, 81-95