• Title/Summary/Keyword: microstructure hardness

Search Result 1,339, Processing Time 0.024 seconds

Effects of Precipitates and Mn Solute Atoms on the Recrystallization Behavior of an Al-Mn Alloy

  • Lee, Yongchul;Kobayashi, Equo;Sato, Tatsuo
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.229-235
    • /
    • 2014
  • In this paper, the effects of precipitates and Mn-solute atoms on the recrystallization behavior of an Al-Mn alloy was studied using micro-Vickers hardness, electrical conductivity measurements and optical microscopy. Various thermo-mechanical processes were designed to investigate the different morphologies, and the solute concentration, of Mn in the matrix. The results indicate that the recrystallization temperature, $T_R$ and time, $t_R$, are influenced by the amount of M-solute atoms in the matrix, and that the recrystallization microstructure is influenced by the amount of precipitates. Recrystallization in the Slow-Cooling specimen was rapid due to its low concentration of Mn-solute atoms, and the crystal-grain size was the smallest due to finely distributed precipitates. However, in the case of the No-Holding specimen, elongated grains were observed at the low annealing temperature and the largest recrystallized grains were observed at the high annealing temperatures (compared with Slow-Cooling and Base specimens) due to the high Mn-solute atoms in the matrix.

Rapid Product Fabrication using Wire Welding with CO2 Laser Irradiation and Milling Process Technology (레이저 용접공정과 밀링공정에 의한 쾌속 금속 시작품)

  • Choi, Du-Seon;Lee, Su-Hong;Sin, Bo-Seong;Yun, Gyeong-Gu;Hwang, Gyeong-Hyeon;Park, Jin-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.104-110
    • /
    • 2001
  • The rapid prototyping and tooling technology has been developed. However, most commercial ones currently use resins or waxes as the raw materials. These days, the direct metal deposition methods are being investigated as new rapid prototyping and tooling technology. A fundamental study on rapid prototyping and tooling with wire welding technology using CO2 laser radiation was carried out in this paper. The main focus is to develop a simple commercial rapid prototyping and tooling system with the exiting laser welding technology as output and their microstructure, hardness and tensile strength are examined for the reliability. In addition, its advantages and disadvantages are discussed as a rapid prototyping and tooling system.

  • PDF

Fabrication and High-temerature Mechanical Property of Liquid-Phase-Sintered SiC (액상소결 탄화규소 세라믹스의 제조 및 고온기계적 특성)

  • Lee, Moonhee;Kim, Sungwon;Lee, Jongho;Hwang, SeungKuk;Gwak, Jaehwan;Lee, Jinkyung;Lee, Sangpill
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.669-674
    • /
    • 2020
  • Liquid-phase-sintered (LPS) SiC materials were briefly examined with their microstructure and mechanical property. Especially, effect of high-temperature exposure on the tendency of fracture toughness of LPS-SiC were introduced. The LPS-SiC was fabricated in hot-press by sintering powder mixture of sub-micron SiC and sintering additives of Al2O3-Y2O3. LPS-SiC represented dense morphology and SiC grain-growth with some amount of micro-pores and clustered additives as pore-filling. The strength of LPS-SiC might affected by distribution of micro-pores. LPS-SiC tended to decrease fracture toughness depending on increasing exposure temperature and time.

A Study on Mechanical Properties and Fracture Behaviors of In-situ Liquid Mixing Processed FeAl/TiC Intermetallic Matrix Composite (In-situ Liquid Mixing 방법으로 제조된 FeAl/TiC 금속간화합물 복합재료의 기계적 특성과 파괴양상에 관한 연구)

  • Chung, Euihoon;Park, Ikmin;Park, Yongho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.683-689
    • /
    • 2010
  • In this study, FeAl based intermetallic matrix composites reinforced with in-situ synthesized TiC particles were fabricated by an in-situ liquid mixing process. The microstructures, mechanical properties and fracture behaviors of the in-situ liquid mixing processed composite were investigated and compared with the vacuum suction casting processed composite. The results showed that the in-situ formed TiC particles exhibited fine and uniform dispersion in the liquid mixing processed composite, while significant grain boundary clustering and coarsening of TiC particles were obtained by the vacuum suction process. It was also shown in both types of composites that the hardness and bending strength were increased with the increase of the TiC volume fractions. Through the study of fractography in the bending test, it was considered that the TiC particles prohibited brittle intergranular fracture of FeAl intermetallic matrix by crack deflections. Because of the uniformly distributed fine TiC particles, the bending strength of the liquid mixing processed composite was superior to that of the casting processed composite.

Fabrication and Characteristics of Ti-Nb-Mo-CPP Composite Fabricated by High Energy Mechanical Milling and Spark Plasma Sintering (고에너지밀링과 스파크플라즈마소결을 이용한 Ti-Nb-Mo-CPP 생체복합재료의 제조 및 특성)

  • Park, Sang-Hoon;Woo, Kee-Do;Kim, Ji-Young;Kim, Sang-Mi
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.469-475
    • /
    • 2012
  • A high-energy mechanical milling (HEMM) process was introduced to improve sinter-ability, and rapid sintering of spark plasma sintering (SPS) under pressure was used to make ultra fine grain (UFG) of Ti-Nb-Mo-CPP composites, which have bio-attractive elements, for increasing mechanical properties. Ti-Nb-Mo-CPP composites were successfully fabricated by SPS at $1000^{\circ}C$ within 5 minutes under 70 MPa using HEMMed powders. The Vickers hardness of the composites increased with increased milling time and addition of CPP contents. Biocompatibility and corrosion resistance of the Ti-Nb-Mo alloys were improved by addition of CPP, and the Ti-35%Nb-10%Mo-10%CPP alloy had better biocompatibility and corrosion resistance than the Ti-6Al-4V ELI alloy.

Mechanical Properties and Consolidation of Nanostructured NiTi Alloy by Rapid Sintering (급속소결에 의한 나노구조 NiTi 합금의 제조 및 기계적 특성)

  • Kim, Na-Ri;Ko, In-Yoong;Cho, Sung-Wook;Kim, Wonbaek;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.819-824
    • /
    • 2010
  • NiTi powders were synthesized during high energy ball milling for 10 h. Highly dense nanostructured NiTi with a relative density of up to 99% was obtained within 1 minute by high frequency induction heated sintering under a pressure of 80 MPa. The grain size, microstructure, and mechanical properties of NiTi were investigated. The grain size and hardness of TiNi are about 122 nm and $590kg/mm^2$, respectively.

Impact Toughness and Softening of the Heat Affected Zone of High Heat Input Welded 390 MPa Yield Strength Grade TMCP Steel (항복강도 390 MPa급 가공열처리강 대입열용접 열영향부 충격인성 및 연화현상)

  • Bang, Kook-Soo;Ahn, Young-Ho;Jeong, Hong-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.796-804
    • /
    • 2018
  • The Charpy impact toughness of the heat affected zone (HAZ) of electro gas welded 390 MPa yield strength grade steel, manufactured by a thermo mechanically controlled process, was investigated. The effects of added Nb on the toughness of the steel and the factors influencing scatter in toughness are discussed in the present work. It was observed that adding Nb to the steel led to the deterioration of HAZ toughness. The presence of soluble Nb in the HAZ increased its hardenability and resulted in a larger amount of low toughness bainitic microstructure. Microstructural observations in the notch root area revealed the significant role of different microstructures in the area. In the presence of a larger amount of bainitic microstructures, the HAZ exhibited a lower Charpy toughness with a larger scatter in toughness. A softened zone with a lower hardness than the base metal was formed in the HAZ. However, theoretical analysis revealed that the presence of the zone might not be a problem in a real welded joint because of the plastic restraint effect enforced by surrounding materials.

Small Punch Creep Evaluation and Microstructure Analysis in Aged P122 Steel (P122강 열화재의 소형펀치 크리프 평가 및 미세조직 분석)

  • Kim, Bum-Joon;Kim, Moon-K;Dung, Hoang Tien;Lim, Byeong-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • This paper investigates the influence of aging time on creep properties via a small punch creep test and evaluates the microstructural change of P122 steel at $600^{\circ}C$. The area fraction of precipitates was quantitatively analyzed to identify the relationship between the creep rupture life and precipitates was coarsening behavior of precipitates along the grain boundaries was also investigated for various aging times. It is found that this coarsening behavior led to a loss of solution hardening and rewulte in a hardness drop and a reduction of creep life.

Deposition Characteristics and Mechanical Properties of Stainless Steel 316L Fabricated via Directed Energy Deposition (에너지 제어 용착을 이용한 스테인리스 316L의 적층 특성 및 기계적 물성 평가)

  • Yang, Seung-weon;Lee, Hyub;Shim, Do-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.59-69
    • /
    • 2021
  • Directed energy deposition (DED) is an additive manufacturing technology involving a focused high-power laser or electron beam propagating over the substrate, resulting in melt pool formation while simultaneously supplying metal powder to the melt pool area to deposit the material. DED is performed to repair and strengthen parts in various applications, as it can be easily integrate local area cladding and cross-material deposition. In this study, we characterize stainless steel 316 L parts fabricated via DED based on various deposition conditions and geometries to widen the application of DED. The deposition characteristics are investigated by varying the laser power and powder feed rate. Multilayer deposition with a laser power of 362 W and a powder feed rate of 6.61 g/min indicate a height closest to the design value while affording high surface quality. The microhardness of the specimen increases from the top to the bottom of the deposited area. Tensile tests of specimens with two different deposition directions indicate that horizontally long specimens with respect to a substrate demonstrate a higher ultimate tensile strength and yield strength than vertically long specimens with lower elongation.

Joint Properties of Stainless Steel and Titanium Alloys Additive Manufactured on Medium Entropy Alloys (중엔트로피 합금 기지 위에 적층조형된 스테인리스강과 타이타늄 합금의 접합특성 분석)

  • Park, Chan Woong;Adomako, Nana Kwabena;Lee, Min Gyu;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.319-326
    • /
    • 2019
  • Additive manufacturing (AM) is a highly innovative method for joining dissimilar materials for industrial applications. In the present work, AM of STS630 and Ti-6Al-4V powder alloys on medium entropy alloys (MEAs) NiCrCo and NiCrCoMn is studied. The STS630 and Ti64 powders are deposited on the MEAs. Joint delamination and cracks are observed after the deposition of Ti64 on the MEAs, whereas the deposition of STS630 on the MEAs is successful, without any cracks and joint delamination. The microstructure around the fusion zone interface is characterized by scanning electron microscopy and X-ray diffraction. Intermetallic compounds are formed at the interfacial regions of MEA-Ti64 samples. In addition, Vicker's hardness value increased dramatically at the joint interface between MEAs and Ti-6Al-4V compared to that between MEAs and STS630. This result is attributed to the brittle nature of the joint, which can lead to a decrease in the joint strength.