DOI QR코드

DOI QR Code

Mechanical Properties and Consolidation of Nanostructured NiTi Alloy by Rapid Sintering

급속소결에 의한 나노구조 NiTi 합금의 제조 및 기계적 특성

  • Kim, Na-Ri (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Ko, In-Yoong (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Cho, Sung-Wook (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Kim, Wonbaek (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
  • 김나리 (전북대학교 신소재공학부 신소재개발 연구센터) ;
  • 고인용 (전북대학교 신소재공학부 신소재개발 연구센터) ;
  • 조성욱 (한국지질자원 연구원) ;
  • 김원백 (한국지질자원 연구원) ;
  • 손인진 (전북대학교 신소재공학부 신소재개발 연구센터)
  • Received : 2010.03.23
  • Published : 2010.09.22

Abstract

NiTi powders were synthesized during high energy ball milling for 10 h. Highly dense nanostructured NiTi with a relative density of up to 99% was obtained within 1 minute by high frequency induction heated sintering under a pressure of 80 MPa. The grain size, microstructure, and mechanical properties of NiTi were investigated. The grain size and hardness of TiNi are about 122 nm and $590kg/mm^2$, respectively.

Keywords

Acknowledgement

Grant : 전략금속 산업원료화 기술개발

Supported by : 한국지질자원연구원

References

  1. K. Otsuka and X. Ren. Prog. Mater. Sci. 50, 511 (2005). https://doi.org/10.1016/j.pmatsci.2004.10.001
  2. D. K. Kennedy, F. K. Straub, LMcD. Schetky, Z. Chaudhry, and R. Roznoy, J. Intell. Mater. Syst. Struct. 15, 235 (2004). https://doi.org/10.1177/1045389X04042794
  3. S. Saadat, J. Salichs, M. Noori, Z. Hou, H. Davoodi, and I. Bar-on, Smart Mater. Struct. 11, 218 (2004).
  4. Wu MH, LMcD. Scheetky, SMAT-2000 proceedings of the international conference on shape memory and superelastic technologies, p. 171-182, SMST publication (2002).
  5. T. Duering, A. Pelton, and D. Stockel, Mater. Sci. Eng. A 149, 273 (1999).
  6. T. W. Duerig, K. N. Melton, D. Stockel, and C. M. Wayman, Engineering Aspects of Shape Memory alloys, Butterworth-Heinemann, London (1990).
  7. J. Van Humbeeck, Mater. Sci. Eng. A 273-275, 134 (1999). https://doi.org/10.1016/S0921-5093(99)00293-2
  8. K. Otsuka and T. Kakeshita, Mater. Res. Soc. 27, 91 (2002). https://doi.org/10.1557/mrs2002.43
  9. E. P. Ryklina, I. Y. Khmelevskaya, S. D. Prokoshkin, R. Y. Turilina, and K. E. Inaekyan, Mater. Sci. Eng. A 378, 519 (2004). https://doi.org/10.1016/j.msea.2003.12.050
  10. S. K. Wu, H. C. Lin, and C. Y. Lee, Surface Coatings Technol. 113, 17 (1999). https://doi.org/10.1016/S0257-8972(98)00811-1
  11. J. Karch, R. Birringer, and H. Gleiter, Nature 330 (1987).
  12. A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413 (2001).
  13. D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002). https://doi.org/10.1016/S0925-8388(02)00067-1
  14. C. Xu, J. Tamasiki, and N. Moura, Sens. Actu. 147 (1991).
  15. D. G. Lamas, A. Caneiro, N. Rein, D. Sanchez, D. Garcia, and B. Alascio, J. Magn. Mater. 297 (1995).
  16. E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, Nano Lett. 241, 207 (2002).
  17. Z. Fang and J. W. Eason, Int. J. Refrac. 297 (1995).
  18. A. I. Y. Tok, I. H. Luo, and F. Y. C. Boey, J. Mate. Sci. Eng. A 229 (2004).
  19. D. M. Lee, K. M. Jo, and I. J. Shon, J. Kor. Inst. Met & Mater. 47, 344 (2009).
  20. N. R. Park, M. K. Choe, J. S., Park, W. Kim, and I. J. Shon, Met. Mater. Inst. 15, 765 (2009). https://doi.org/10.1007/s12540-009-0765-x
  21. C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  22. S. K. Wu, H. C. Lin, and C. Y. Lee, Surface Coatings Technol. 113, 13 (1999). https://doi.org/10.1016/S0257-8972(98)00810-X