Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.09.819

Mechanical Properties and Consolidation of Nanostructured NiTi Alloy by Rapid Sintering  

Kim, Na-Ri (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
Ko, In-Yoong (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
Cho, Sung-Wook (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources)
Kim, Wonbaek (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources)
Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.9, 2010 , pp. 819-824 More about this Journal
Abstract
NiTi powders were synthesized during high energy ball milling for 10 h. Highly dense nanostructured NiTi with a relative density of up to 99% was obtained within 1 minute by high frequency induction heated sintering under a pressure of 80 MPa. The grain size, microstructure, and mechanical properties of NiTi were investigated. The grain size and hardness of TiNi are about 122 nm and $590kg/mm^2$, respectively.
Keywords
NiTi; nanostructure; sintering; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 S. K. Wu, H. C. Lin, and C. Y. Lee, Surface Coatings Technol. 113, 17 (1999).   DOI   ScienceOn
2 J. Karch, R. Birringer, and H. Gleiter, Nature 330 (1987).
3 A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413 (2001).
4 D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002).   DOI   ScienceOn
5 C. Xu, J. Tamasiki, and N. Moura, Sens. Actu. 147 (1991).
6 D. G. Lamas, A. Caneiro, N. Rein, D. Sanchez, D. Garcia, and B. Alascio, J. Magn. Mater. 297 (1995).
7 Z. Fang and J. W. Eason, Int. J. Refrac. 297 (1995).
8 A. I. Y. Tok, I. H. Luo, and F. Y. C. Boey, J. Mate. Sci. Eng. A 229 (2004).
9 D. M. Lee, K. M. Jo, and I. J. Shon, J. Kor. Inst. Met & Mater. 47, 344 (2009).
10 N. R. Park, M. K. Choe, J. S., Park, W. Kim, and I. J. Shon, Met. Mater. Inst. 15, 765 (2009).   DOI   ScienceOn
11 C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
12 S. K. Wu, H. C. Lin, and C. Y. Lee, Surface Coatings Technol. 113, 13 (1999).   DOI   ScienceOn
13 E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, Nano Lett. 241, 207 (2002).
14 K. Otsuka and X. Ren. Prog. Mater. Sci. 50, 511 (2005).   DOI   ScienceOn
15 D. K. Kennedy, F. K. Straub, LMcD. Schetky, Z. Chaudhry, and R. Roznoy, J. Intell. Mater. Syst. Struct. 15, 235 (2004).   DOI   ScienceOn
16 S. Saadat, J. Salichs, M. Noori, Z. Hou, H. Davoodi, and I. Bar-on, Smart Mater. Struct. 11, 218 (2004).
17 Wu MH, LMcD. Scheetky, SMAT-2000 proceedings of the international conference on shape memory and superelastic technologies, p. 171-182, SMST publication (2002).
18 T. Duering, A. Pelton, and D. Stockel, Mater. Sci. Eng. A 149, 273 (1999).
19 T. W. Duerig, K. N. Melton, D. Stockel, and C. M. Wayman, Engineering Aspects of Shape Memory alloys, Butterworth-Heinemann, London (1990).
20 J. Van Humbeeck, Mater. Sci. Eng. A 273-275, 134 (1999).   DOI   ScienceOn
21 K. Otsuka and T. Kakeshita, Mater. Res. Soc. 27, 91 (2002).   DOI
22 E. P. Ryklina, I. Y. Khmelevskaya, S. D. Prokoshkin, R. Y. Turilina, and K. E. Inaekyan, Mater. Sci. Eng. A 378, 519 (2004).   DOI   ScienceOn