Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.6.469

Fabrication and Characteristics of Ti-Nb-Mo-CPP Composite Fabricated by High Energy Mechanical Milling and Spark Plasma Sintering  

Park, Sang-Hoon (Division of Advanced Materials Engineering & RCAMD)
Woo, Kee-Do (Division of Advanced Materials Engineering & RCAMD)
Kim, Ji-Young (Division of Advanced Materials Engineering & RCAMD)
Kim, Sang-Mi (Division of Advanced Materials Engineering & RCAMD)
Publication Information
Korean Journal of Metals and Materials / v.50, no.6, 2012 , pp. 469-475 More about this Journal
Abstract
A high-energy mechanical milling (HEMM) process was introduced to improve sinter-ability, and rapid sintering of spark plasma sintering (SPS) under pressure was used to make ultra fine grain (UFG) of Ti-Nb-Mo-CPP composites, which have bio-attractive elements, for increasing mechanical properties. Ti-Nb-Mo-CPP composites were successfully fabricated by SPS at $1000^{\circ}C$ within 5 minutes under 70 MPa using HEMMed powders. The Vickers hardness of the composites increased with increased milling time and addition of CPP contents. Biocompatibility and corrosion resistance of the Ti-Nb-Mo alloys were improved by addition of CPP, and the Ti-35%Nb-10%Mo-10%CPP alloy had better biocompatibility and corrosion resistance than the Ti-6Al-4V ELI alloy.
Keywords
biomaterials; sintering; microstructure; SEM; spark plasma sintering (SPS);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Nouri, X. Chen, Y. Li, Y. Yamada, P. D. Hodgson, and C. Wen, Mater. Sci. Eng. 485, 562 (2008).   DOI   ScienceOn
2 G. He, J. Eckert, Q. L. Dai, M. L. Sui, W. Loser, M. Hagiwara, and E. Ma, Biomater. 24, 5115 (2003).   DOI   ScienceOn
3 M. Long and H. J. Rack, Biomater. 19, 1621 (1998).   DOI   ScienceOn
4 Y. Okazaki, S. Rao, Y. Ito, and T. Tateishi, Biomater. 19, 1197 (2003).
5 E. Whiteside, Clin.Orthop. 248, 1092 (1998).
6 H. S. Kim, S. H. Lim, I. D. Yeo, and W. Y. Kim, Mater. Sci. Eng. A 449, 322 (2007).
7 S. Ishiyama. S. Hanada, and O. Izumi, ISIJ Inter. 31, 807 (1991).   DOI
8 H. Cimenoglu, O. Meydanoglu, M. Baydogan, H. Bermek, P. Huner, and E. S. Kayali, Met. Mater. Int. 17, 765 (2011).   DOI   ScienceOn
9 S. Nag, R. Banerjee, and H. L. Fraser, Acta Biomater. 3, 369 (2007).   DOI   ScienceOn
10 Y. L. Hao, S. J. Li, S. Y. Sun, and R. Yang, Mater. Sci. Eng. A 441, 112 (2006).   DOI   ScienceOn
11 E. Takahashi, T. Sakurai, S. Watanabe, N. Masahashi, and S. Hanada, Mater. Trans. 43, 2978 (2002).   DOI   ScienceOn
12 L. M. Elias, S. G. Schneider, S. Schneider, H. M. Silva, and F. Malvisi. Mater. Sci. Eng. A 432, 108 (2006).   DOI   ScienceOn
13 C. Knabe, G. Berger, R. Gildenhaar, F. Klar, and H. Zreiqat, Biomater. 25, 4911 (2004).   DOI   ScienceOn
14 H. S. Kim, I. D. Yeo, W. Y. Kim, D. H. Cho, S. H. Lim, M. S. Moon, and W. J. Kang, J. Kor. Inst. Met. & Mater. 44, 6 (2006).
15 D. L. Zhang, Prog.Mater. Sci. 49, 537 (2004).   DOI   ScienceOn
16 J. Song, H. S. Kim, H. M. Kim, T. Kim and S. Hong, J. Kor. Powder Metall. Inst. 17, 302 (2010).   DOI   ScienceOn
17 Y. M. Zhang, PhD Thesis, Harbin Institute of Technology, P. R. China (2007).
18 C. Q. Ning and Y. Zhou, Biomater. 23, 2909 (2002).   DOI   ScienceOn
19 R. Sun, M. Li, Y. Lu, and X. An, Mater. Sci. Eng. 26, 28 (2006).   DOI   ScienceOn
20 W. D. Woo, H. B. Lee, I. Y. Kim, I. J. Shon, and D. L. Zhang, Met. Mat. Int. 14, 327 (2008).   DOI   ScienceOn
21 K. D. Woo, D. S. Kang, M. S. Moon, S. H. Kim, Z. G. Liu, and A. N. Omran, Korean J. Met. Mater. 48, 369 (2010).   DOI   ScienceOn