• Title/Summary/Keyword: microstructural analysis

Search Result 532, Processing Time 0.026 seconds

Effect of basalt fibers on fracture energy and mechanical properties of HSC

  • Arslan, Mehmet E.
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.553-566
    • /
    • 2016
  • Fracture energy is one of the key parameters reveal cracking resistance and fracture toughness of concrete. The main purpose of this study is to determine fracture behavior, mechanical properties and microstructural analysis of high strength basalt fiber reinforced concrete (HSFRC). For this purpose, three-point bending tests were performed on notched beams produced using HSFRCs with 12 mm and 24mm fiber length and 1, 2 and $3kg/m^3$ fiber content in order to determine the value of fracture energy. Fracture energies of the notched beam specimens were calculated by analyzing load versus crack mouth opining displacement curves by the help of RILEM proposal. The results show that the effects of basalt fiber content and fiber length on fracture energy are very significant. The splitting tensile and flexural strength of HSFRC increased with increasing fiber content whereas a slight drop in flexural strength was observed for the mixture with 24mm fiber length and $3kg/m^3$ fiber content. On the other hand, there was no significant effect of fiber addition on the compressive strength and modulus of elasticity of the mixtures. In addition, microstructural analysis of the three components; cement paste, aggregate and basalt fiber were performed based on the Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy examinations.

Microstructural Characterization of Composite Electrode Materials in Solid Oxide Fuel Cells via Image Processing Analysis

  • Bae, Seung-Muk;Jung, Hwa-Young;Lee, Jong-Ho;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.86-91
    • /
    • 2010
  • Among various fuel cells, solid oxide fuel cells (SOFCs) offer the highest energy efficiency, when taking into account the thermal recycling of waste heat at high temperature. However, the highest efficiency and lowest pollution for a SOFC can be achieved through the sophisticated control of its constituent components such as electrodes, electrolytes, interconnects and sealing materials. The electrochemical conversion efficiency of a SOFC is particularly dependent upon the performance of its electrode materials. The electrode materials should meet highly stringent requirements to optimize cell performance. In particular, both mass and charge transport should easily occur simultaneously through the electrode structure. Matter transport or charge transport is critically related to the configuration and spatial disposition of the three constituent phases of a composite electrode, which are the ionic conducting phase, electronic conducting phase, and the pores. The current work places special emphasis on the quantification of this complex microstructure of composite electrodes. Digitized images are exploited in order to obtain the quantitative microstructural information, i.e., the size distributions and interconnectivities of each constituent component. This work reports regarding zirconia-based composite electrodes.

Microstructural analyses of soyprotein fibers (대두 단백섬유의 미세구조 연구)

  • Kim, J.C.;Cho, S.J.;Byun, P.H.;Yoon, S.K.;Rhee, K.C.;Byun, S.M.
    • Applied Biological Chemistry
    • /
    • v.34 no.4
    • /
    • pp.353-359
    • /
    • 1991
  • As a tool for the texture analyses of the soyprotein fibers, the scanning electron microscopical microstructure were studied. With the results of TPA(Texture Profile Analysis), microstructural analyses of the soyprotein fibers showed that the disulfide and hydrogen bonds are one of the most important factors determining the shape and maintenance of fiber struture. The microstructures of the hydrated soyprotein dispersion and dope, as starting materials of the soyprotein fiber were presented.

  • PDF

Evaluation of Degradation Characteristics of Thermal Barrier Coating on Gas Turbine Blades

  • Jung, Yongchan;Kim, Mintae;Lee, Juhyeung;Ahn, Jamin;Kim, Kihong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.273-278
    • /
    • 2016
  • In order to evaluate the lifespan of high-temperature parts with thermal barrier coating in gas turbines used for power generation, this study was performed on an 80 MW-class gas turbine exceeding 24 k equivalent operating hours. Degradation characteristics were evaluated by analyzing the YSZ (Yttria Stabilized Zirconia) top coat, which serves as the thermal barrier coating layer, the NiCrAlY bond coat, and interface layers. Microstructural analysis of the top, middle, and bottom sections showed that Thermal Growth Oxide (TGO) growth, Cr precipitate growth within the bond coat layer, and formation of diffusion layer occur actively in high-temperature sections. These microstructural changes were consistent with damaged areas of the thermal barrier coating layer observed at the surface of the used blade. The distribution of Cr precipitates within the bond coat layer, in addition to the thickness of TGO, is regarded as a key indicator in the evaluation of degradation characteristics.

Variation of Alloying Element Distribution and Microstructure due to Microsegregation in Ni-base Superalloy GTD 111 (니켈기 초내열 합금 GTD 111에서 편석에 의한 합금원소 분포 및 미세조직 변화)

  • Choi, Baig-Gyu;Kim, In-Soo;Do, Jeong-Hyeon;Jung, Joong-Eun;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.170-177
    • /
    • 2015
  • Segregation during solidification and homogenization during thermal exposure in GTD 111 were investigated. The microstructures of as-cast, standard heat-treated, and thermally exposed specimens were observed by SEM. A compositional analysis of each specimen was conducted by EDS. The dendrite core was enriched in W and Co, though lower levels of Ti and Ta were observed. An unexpected phase, in this case like the ${\eta}$ phase, was observed due to segregation near the ${\gamma}-{\gamma}^{\prime}$ eutectic in the standard heat-treated specimen. Segregation also induced microstructural evolution near the ${\gamma}-{\gamma}^{\prime}$ eutectic during the standard heat treatment. A quantitative analysis and microstructural observations showed that the thermal exposure at a high temperature enhanced the chemical homogeneity of the alloy.

Evaluation of Thermal Degradation of 2.25Cr-1Mo Steel Using Ultrasonic Nonlinear Effect and X-ray Diffraction Method (초음파 비선형 음향 효과 및 X-선 회절법을 이용한 2.25Cr-1Mo 강의 열화 손상 평가)

  • Kim, Duk-Hee;Park, Un-Su;Park, Ik-Keun;Byeon, Jai-Won;Kwun, Sook-In
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.71-79
    • /
    • 2002
  • It was attempted to evaluate the degree of degradation of thermally aged 2.25-1Mo steek by ultrasonic monlinear parameter(UNP) measurement and X-ray diffraction analysis of extracted carbide. Artificial aging was performed to simulate the microstructural degradation in 2.25Cr-1Mo steel arising from long time exposure at $540{\circ}C$. Microstructural analysis (number of carbides per unit area) and measurements of mechanical properties(Vickers hardness, DBTT) and degradation evaluation parameters(UNP and intensity ration of X-ray diffraction peak of electrolytically extracted carbide) were performed. Both of UNP and intensity ratio of X-ray diffraction peak for M6C carbide to that of M23C6 carbide(IR) increased abruptly in the initial 1000 hour of aging and then changed little. UNP and IR were proposed as potential parameters to evaluate the degree of aging degradation of 2.25Cr-1Mo steel.

Effect of wood pellet fly ash on strength and microstructure of Korean weathered granite soil

  • Jebie A. Balagosa;Min Jy Lee;Yun Wook Choo;Ha Seog Kim;Jin Man Kim
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.335-352
    • /
    • 2024
  • Low carbon energy demand in South Korea is increasing, hence leading to an increasing usage of wood pellets and the amount of its combustion by-product called wood pellet fly ash (WA). In an effort to develop recycling technology, this research investigates the use of WA as a new sustainable binder for backfill soil materials. The influence of WA on weathered granite soils (WS) is investigated by mixing 5%, 15%, and 25% of WA dosage, compacted at optimum moisture content, then cured for 3, 7, 14, and 28 days. After curing, the compacted specimens were investigated through unconfined compressive tests, pH tests, total suction tests, and microstructural analysis. The findings suggest that the higher the dosage rate, the higher strength and modulus. Additionally, the alkali ions of WA aid in the cementation of WS particles, and newly cementitious minerals are confirmed after 28 curing days. The refinement of pore microstructures led to a denser WS matrix and stiffness improvements. The results validate the binding potential of wood pellet fly ash on weathered granite soils in terms of strength, modulus, and microstructures.

Analysis of Microstructure and Thermal Conductivity of Concrete Thermal Energy Storage based on Amount of Graphite Mixture (그라파이트 혼입량에 따른 에너지 저장 콘크리트의 미세구조 및 열전도도 분석)

  • Kim, Se-Yun;Kim, Sung-Jo;Suh, Jeewoo;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.293-300
    • /
    • 2021
  • In this study, the microstructure and thermal conductivity correlation was investigated for concrete materials used in concrete thermal energy storage (CTES) among real-time energy storage devices. Graphite was used as admixture to increase the thermal conductivity performance of the CTES. Concrete specimens of 10% and 15% substitution of cement by mass with graphite, as well as ordinary portland cement (OPC) specimens were prepared, and the microstructural changes and effects on thermal conductivity were analyzed. Porosities of OPC and concrete with graphite were compared using micro-CT, and the microstructural characteristics were quantified using probability functions. Three-dimensional virtual specimens were constructed for thermal analysis, to confirm the effect of microstructural characteristics on thermal conductivity, and the results were compared with the measured conductivity obtained using the hot-disc method. To identify thermal conductivity of graphite for thermal analysis, solid phase conductivity was inversely determined based on simulation and experimental results, and the effect of graphite on thermal conductivity was analyzed.

The Microstructural and Electrical Properties of Ni-Mn-Co Oxide for the Application of NTC Thermistors (NTC 서미스터로 응용을 위한 Ni-Mn-Co 산화물의 미세구조와 전기적 특성)

  • Kim, Kyeong-Min;Lee, Sung-Gap;Kwon, Min-Su;Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.361-365
    • /
    • 2017
  • In this paper, we investigated the effect of Co content on the microstructural and electrical properties of $Ni_{0.79}Mn_{2.21-x}Co_xO_4$ (x=0 to 0.25) specimens. Solid-state reaction was used to prepare the bulk specimens. XRD (X-ray diffraction) patterns showed that all compositions had a cubic spinel phase. As a result of the microstructural properties, FE-SEM(field-emission scanning electron microscopy) analysis showed a dense structure, and the mean grain size increased from $5.24{\mu}m$ to $7.33{\mu}m$ with an increase of Co content from x=0 to 0.25. All specimens exhibited the typical NTC thermistor characteristics as the electrical resistance exponentially decreased with increasing temperature. The resistivity and the B-value of $Ni_{0.79}Mn_{1.96}Co_{0.25}O_4$ were $2959{\Omega}{\cdot}cm$ and 3719, respectively.