DOI QR코드

DOI QR Code

The Microstructural and Electrical Properties of Ni-Mn-Co Oxide for the Application of NTC Thermistors

NTC 서미스터로 응용을 위한 Ni-Mn-Co 산화물의 미세구조와 전기적 특성

  • Kim, Kyeong-Min (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Sung-Gap (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kwon, Min-Su (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Young-Gon (Department of Electronics, Chosun College of Science and Technology)
  • 김경민 (경상대학교 공학원 나노신소재융합공학과) ;
  • 이성갑 (경상대학교 공학원 나노신소재융합공학과) ;
  • 권민수 (경상대학교 공학원 나노신소재융합공학과) ;
  • 김영곤 (조선이공대학교 전자과)
  • Received : 2017.02.02
  • Accepted : 2017.03.29
  • Published : 2017.06.01

Abstract

In this paper, we investigated the effect of Co content on the microstructural and electrical properties of $Ni_{0.79}Mn_{2.21-x}Co_xO_4$ (x=0 to 0.25) specimens. Solid-state reaction was used to prepare the bulk specimens. XRD (X-ray diffraction) patterns showed that all compositions had a cubic spinel phase. As a result of the microstructural properties, FE-SEM(field-emission scanning electron microscopy) analysis showed a dense structure, and the mean grain size increased from $5.24{\mu}m$ to $7.33{\mu}m$ with an increase of Co content from x=0 to 0.25. All specimens exhibited the typical NTC thermistor characteristics as the electrical resistance exponentially decreased with increasing temperature. The resistivity and the B-value of $Ni_{0.79}Mn_{1.96}Co_{0.25}O_4$ were $2959{\Omega}{\cdot}cm$ and 3719, respectively.

Keywords

References

  1. M. N. Muralidharan, P. R. Rohini, E. K. Sunny, K. R. Dayas, and A. Seema, Ceram. Int., 38, 6481 (2012). [DOI: http://dx.doi.org/10.1016/j.ceramint.2012.05.025]
  2. J. Wang and J. Zhang, J. Mater. Res., 27, 928 (2012). [DOI: https://doi.org/10.1557/jmr.2012.29]
  3. K. Park, J. Eur. Ceram. Soc., 26, 909 (2006). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2004.12.021]
  4. V.A.M. Brabers, F. M. Van Setten, and P.S.A. Knapen, J. Solid State Chem., 49, 93 (1983). [DOI: http://dx.doi.org/10.1016/0022-4596(83)90220-7]
  5. J. B. Kwon, Y. K. Chung, W. S. Um, J. K Song, and K. S. Yoo, J. Korean Ceram. Soc., 38, 1174 (2001).
  6. K. S Park, D. Y Bang, S. J Yun, and B. H. Choi, J. Korean Ceram. Soc., 39, 912 (2002). [DOI: http://dx.doi.org/10.4191/KCERS.2003.40.1.011]
  7. A. Rousset, C. Tenailleau, P. Dufour, H. Bordeneuve, I, Pasquet, S. Guillemet-Fritsch, V. Poulain, and S. Schuurman, Int. J. Appl. Ceram. Technol., 10, 175 (2013). [DOI: http://dx.doi.org/10.1111/j.1744-7402.2011.02723.x]
  8. G. Hardal and B. Y. Price, Mater. Technol., 50, 923 (2016). [DOI: http://dx.doi.org/10.17222/mit.2015.228]
  9. H. R. Jung, S. G. Lee, M. H. Kim, and J. H. Yeo, Microelectron. Eng., 146, 109 (2015). [DOI: http://dx.doi.org/10.1016/j.mee.2015.06.010]
  10. K. M Kim, S. G Lee, D. J. Lee, and M. R. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 337 (2016). [DOI: http://dx.doi.org/10.4313/JKEM.2016.29.6.337]
  11. E. G. Larson, R. J. Arnott, and D. G. Wickham, J. Phys. Chem. Solids, 23, 1771 (1962). [DOI: http://dx.doi.org/10.1016/0022-3697(62)90216-0]
  12. Z. Jeffries, Chem. Met. Eng., 16, 503 (1917).
  13. K. Park, J. K. Lee, J. G. Kim, and S. Nahm, J. Alloys Compd., 437, 211 (2007). [DOI: http://dx.doi.org/10.1016/j.jallcom.2006.07.070]
  14. K. Park, S. J. Kim, J. G. Kim, and S. Nahm, J. Eur. Ceram. Soc., 27, 2009 (2007). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2006.07.002]
  15. J. L. Martin De Vildales, P. Garcia-chain, R. M. Rojas, E. Vila, and O. Garcia-Martinez, J. Mater. Sci., 33, 1491 (1998). [DOI: http://dx.doi.org/10.1023/A:1004351809932]
  16. C. Ma, Y. Liu, Y. Lu, H. Gao, H. Qian, and J. Ding, J. Mater. Sci. Eng. B, 188, 66 (2014). [DOI: http://dx.doi.org/10.1016/j.mseb.2014.06.011]