High speed probe for measurement of sin91e flux quantum circuits is comprised of coaxial cables and microstrip lines in order to carry high speed signals without loss. For the impedance matching between coaxial cable and microstrip line, we have determined the dimension of the microstrip line with 50${\Omega}$ impedance by simulation and then have investigated the effect of line width and cross-sectional shape of signal line, dielectric material, thickness of soldering lead at the coaxial-to-microstrip transition Point, and the an91c between dielectric material and end part of the signal line on the characteristics of signal transmission of the microstrip line. From the simulation, we have found that these all parameter's had influenced on the characteristic of signal transmission on the microstrip line and should be reflected in fabricating high speed probe, We have also determined the dimension of coplanar waveguide to fabricate testing sample for performance test of high speed probe.
본 논문에서는 RF 부품 수동소자 중 가장 기본적인 요소가 되는 전송선로를 DAML(Dtelectric-supported Airbridge Microstrip Line) 형태의 새로운 구조로 제안하였으며, DAMS(Micro Electro Mechanical System) 기술 중 표면 마이크로머싱닝(surface micromachining) 기법을 이용하여 구현하였다. 제안된 구조는 마이크로스트립 라인(microstrip line)의 응용 형태로서 기존의 신호선(signal line)과 ground 사이에 유전체 지지대(dielectric post)를 사용하였고, 신호선을 공중으로 띄우면서 넓은 범위의 임피던스에서 유전체 손실(dielectric loss)을 최소화하였다. 본 논문에서 제작된 전송선로는 10 ㎛의 신호선의 높이와 10 ㎛ × 10 ㎛의 지지대(Post) 면적과 9 ㎛의 지지대(post)의 높이와 5 mm의 길이로 제작되었다. 50 GHz에서 일반적인 마이크로스티립(microstrip) 전송선의 손실이 약 7.5 dB/cm 이상 되는 것과 비교하여 본 논문에서 제안한 구조에서는 50 GHz에서 전송선의 손실이 약 1.1 dB/cm가 되는 것을 얻었다.
마이크로스트립 라인은 마이크로웨이브와 밀리미터웨이브 집적회로에 있어서 가장 필수적인 소자 중의 하나이다. 그동안 여러 가지 주파수 영역 해석법에 의해 이러한 마이크로스트립 라인의 주파수 종속특성이 해석되었다. 하지만 본 논문에서 제시된 3차원 TLM법은 마이크로스트립 라인의 주파수 영역 해를 얻기 위한 또 다른 독립적인 해석법이다. 이러한 TLM 알고리즘을 이용하여 해석된 구조는 스텝 불연속 마이크로스트립 라인이며 대칭압축노드가 사용되었다. 수치해석 과정을 거쳐 시간 영역 데이터를 퓨리어 변환함으로써 스텝 불연속 마이크로스트립 라인의 주파수 종속 산란 파라메터가 계산되었다. 시간 영역 TLM 해석 결과로부터 이와 같은 수치해석법이 스텝 불연속 마이크로스트립 라인과 같이 복잡한 구조를 모델링하는데 있어 효율적인 방법임을 보였다.
TLM 수치 해석법의 주요한 장점은 가장 복잡한 전송선 구조에 있어서도 해석이 용이하다는 것이다. 본 논문에서는 대칭압축노드를 이용한 TLM법을 마이크로스트립 meander 라인에 성공적으로 적용하였다. 플라나 마이크로스트립 전송선을 모델화하기 위한 대칭압축노드에 대한 상세한 기술이 제시되었고 또한 2종류의 마이크로스트립 meander 라인의 산란 파라메터 $S_{11}$과 $S_{21}$을 계산하였다. 구해진 결과로부터 TLM 해석법이 복잡한 플라나 마이크로웨이브 전송선 구조를 모델링하는데 유용한 해석법임을 보였다. 제시된 TLM 해석 결과는 고주파 영역에서 마이크로웨이브 집적 회로를 설계하는데 유용하게 사용될 수 있다.
In this paper, using symmetrical condensed node(SCN), the TLM numerical technique has been successfully applied to microstrip meander line. A detailed technique of the symmetrical condensed node(SCN) may be used to model planar microstrip transmission line is presented. Also, the S-parameters $S_{11}$ and $S_{21}$ of microstrip meander line have been computed. From obtained results, TLM analysis is shown to be an efficient method for modeling complicated structure of planar microstrip transmission line.
The SCN-TLM method presented in this paper is another independent approaches for obtaining frequency domain results for microstrip line. The structure analysed with this TLM algorithm is step discontinuity microstrip line and the symmetrical condensed node is used. After numerical analysis, the frequency dependent scattering parameters of a step discontinuity microstrip line have been calculated by Fourier transform of the time domain data. From the time domain TLM numerical results, this numerical analysis is shown to be an efficient method for modelling complicated structure as step discontinuity microstrip line.
In this paper a printed pair dipole antenna with double tapered microstrip balun for wireless communications is proposed. The proposed antenna consists of a pair arm of different sizes that is branched microstrip line and microstrip line with the ground plane on opposite side of the dielectric substrate plane. The proposed antenna is matched between the ground plane to the microstrip line by double tapered microstrip balun. This antenna obtains multi-band radiation frequency band. The impedance bandwidths for a reflection coefficient of VSWR ≤ 2 are about 1.01 GHz (2.35~3.336 GHz), 1.56 GHz (4.7~6.26 GHz) and 1.15GHz (6.85~8.0[GHz]). Additionally, the measurement peak gain is about 3.6 dBi. The proposed antenna is able to support wireless communication applications.
In this paper, discontinuity parts in microstrip line with $\lambda$/4 open stub and one in crank type have been anlayzed by using FDTD(Finite-Difference Time-Domain) analysis method. The noise components, in this case, are occred at the discontinuites of the given microstrip lines, the complex poles were extracted by the analysis using GPOF (Generalized Pencil-of Function) method from electric field of time domain. It has, then, been found that the noise level and the noise frequency components included in signal could be derived.
The propagation properties of Gaussian pulse signals on the microstrip line are investigated by the Kirschning & Jansen's approximated equation to meet the frequency range of a pulse, accuracy, and geometrical requiremtns of the microstrip line. The dispersion of pulse signals is analyzed regarding to the relative permittivity .epsilon.$_{r}$, substrate height h and strip width w of the microstrip line. To verify theoretical results, several samples of 50.OMEGA. microstrip lines are fabricated. And the characteristics of pulse propagation along these lines are simple measured using VNA(Vector Network Analyzer) with time-domain analysis function. A fairly good agreement has been found between the measured pulse waveforms and computer simulations.
본 논문에서는 비아 트랜지션을 이용하여 마이크로스트립 선로를 구현하고 이것을 이용하여 다층 레이어를 사용하여 링 하이브리드 결합기를 설계하였다. 여기서 사용된 트랜지션은 서로 다른 레이어에 존재하는 마이크로스트립 선로를 연결하기 위해서 비아를 사용한 샌드위치 구조이다. 컴팩트한 RF/ 마이크로웨이브 소자를 설계하기 위해서 이러한 비아를 이용한 마이크로스트립 선로의 구현은 긴 전송선로를 짧게 구현할 수 있다. 이러한 트랜지션의 유용성을 보이기 위해서 중심 주파수 2 GHz에서 링 하이브리드 결합기를 구현하였다. 그 결과 특성은 시뮬레이션과 거의 동일함을 확인하였고, 크기는 기존 것과 비교하여 50% 줄일 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.