• Title/Summary/Keyword: microstrip

Search Result 1,801, Processing Time 0.022 seconds

The Wide-band Two-element Microstrip Slot Array Antenna with the Cross-shaped Feedline

  • Shin, Ho-Sub;Kim, Nam;Jang, Yong-Woong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.163-166
    • /
    • 2000
  • The design, numerical simulation, and an experimental implementation of two-element cross-shaped microstrip line-fed printed slot array antenna for IMT-2000 at the 2.0 GHz band is presented in this paper. The proposed antenna with relative permittivity 4.3 and thickness 1.0mm is analyzed by the Finite-Difference Time-Domain (FDTD) method. It was shown that the measured 2.0 VSWR bandwidth of one-element microstrip slot antenna is from 1.42 GHz to 2.69 GHz, which is approximately 61.8% and that of two-element microstrip slot array antenna is from 1.42 GHz to 2.56 GHz, which is approximately 57.3% And it was shown that the measured gain of one-element microstrip slot antenna is 2.75 dBi and that of two-element microstrip slot antenna is 4.75 dEi. The antennas were fabricated and tested. The measured results are in good agreements with the FDTD results.

  • PDF

Analysis of Step Discontinuities of Microstrip Lines Using the Mode-Matching Technique (모드 정합법을 이용한 마이크로스트립 선로 계단형 불연속의 해석)

  • 고동수;윤상원;장익수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1810-1816
    • /
    • 1990
  • Step discontinuities of microstrip lines are analyzed using the mode-matching technique based on the well-known waveguide model. Including higher-order modes, the generalized scattering matrices are obtained. Asymmetrical step discontinuities as well as symmetrical step discontinuities are analyzed. The resonance characteristics of microstrip patches are calculated by cascading two microstrip step discontinuities through a uniform microstrip line. Experimental results agree well with theroretical ones.

  • PDF

Frequency Agile Properties of Microstrip Antenna Using Quartz (Quartz를 이용한 마이크로스트립 안테나의 주파수 특성에 관한 연구)

  • 하용만;오승재;우형관;송준태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.488-491
    • /
    • 2001
  • This paper investigated that resonant frequencies of microstrip patch antenna were agile when piezoelectric materials were used as the antenna substrates. The resonant frequencies of the microstrip antenna using the piezoelectric substrate. The microstrip patch antenna made of Quartz substrate was designed and fabricated by Ensemble v 7.0 simulator. The experimental problem was compensated by Ensemble v 7.0

  • PDF

A Study on the Comb-Pattern Slot in the Supplementary Microstrip Patch (추가된 마이크로스트립 패치의 빗살무늬 슬롯에 의한 영향 연구)

  • Shim, Jae-Ruen
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.180-183
    • /
    • 2006
  • In this study, an supplementary microstrip patch with a comb-pattern slot is positioned on the conventional single layer microstrip patch antenna. Numerical results of the antenna bandwidth and the antenna gain are increased compared with those of the conventional single layer microstrip patch antenna. In the future, the geometry of the slot in an supplementary microstrip patch is researched for the enhancement of the microstrip antenna characteristics.

Front-to-Back Ratio Improvement of a Microstrip Patch Antenna Loaded with Soft Surface Structure in a Partially Removed Ground Plane

  • Lee, Hong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.247-253
    • /
    • 2012
  • This study presents a new, simple method for improving the front-to-back (F/B) ratio of a microstrip patch antenna. The back radiation of the microstrip patch antenna is reduced by removing some metallic parts around the ground plane and placing a new soft-surface configuration, consisting of an array of stand-up split-ring resonators on a bare dielectric substrate near the two ground plane edges. Compared to the F/B ratio of a conventional microstrip patch antenna with a full ground plane of the same size, our proposed microstrip patch antenna experimentally achieves an improved F/B ratio of 9.6 dB.

Frequency Agile Properties of Microstrip Antenna Using Quartz (안테나의 주파수 특성에 관한 연구)

  • Yun, Chang-Jin;Ha, Yong-Man;Hwang, Hyun-Suk;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.715-718
    • /
    • 2002
  • This paper investigated that resonant frequencies of microstrip patch antenna were agile when piezoelectric materials were used as the antenna substrates. When the bias is applied on them, thickness of the substrate is varied according. to the piezoelectric phenomenon. The microstrip patch antenna using Quartz substrate was fabricated and designed by Ensemble v 7.0 simulator. We fabricated the microstrip antennas using Quartz(Y-cut) as its substrate. When the operating frequencies of the microstrip antenna were 7.045GHz, 7.773GHz 8.18GHz the frequency shifts versus electric field, Emax=4[kV/cm], were 21MHz, 26MHz and 28MHz, respectively.

  • PDF

A Design of ASP Microstrip Antenna for PCS band and IMT-2000 band (PCS 대역과 IMT-2000 대역 겸용 ASP 마이크로스트립 안테나 설계)

  • Lee, Eun-Gyu;Jang, Young-Chul;Lee, Jae-Wook;Lee, Won-Hui;Hur, Jung
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.397-400
    • /
    • 2001
  • In this paper, to improve bandwidth of microstrip antenna, we discussed the patch structure using Aperture Stacked Patch. To provid PCS service and IMT-2000 service simultaneous, a microstrip patch antenna needs impedance bandwidth of 22%. But typical microstrip patch antennas have impedance bandwidth of 3∼6%. To analyze characteristics of microstrip pach antenna, we used Ensemble of commercial software. The microsrtip patch antenna was designed and fabricated, tuned. We get following results; 650MHz(33%) of impedance bandwidth for VSWR 1.5. The measured gain of ASP microstrip antenna is 6.94dBi.

  • PDF

Numerical Analysis of Multi-Layer Multi-Coupled Microstrip Lines (쉬해석에 의한 다층 다중 결합 마이크로스트립 선로 해석)

  • Seo, Cheol-Heon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1E
    • /
    • pp.5-10
    • /
    • 1994
  • It is obtained the general expessions of the numerical method are applied for the TEM-mode analysis of multu-layer multi-coupled microstrip lines, In this paper, coupled microstrip are replaced by three-coupled microstrip lines in special aplications. Three-layer versions of three-coupled microstrip lines are specially attactive because of the additional flexibilities offered by three-layer configuration. This structure can be used for obtaining large capacitance and preventing coupling among microstrip lines in filter and coupler. Sappihre is chosen for anisotropic substrates material. The permittivity parallel to the optical axis is higher than the permittivity in the plane perpendicular to this axis.

  • PDF

A Study on the Design of Wideband Antenn as using U-Slot Patches (U-Slot 패치를 이용한 광대역 안테나의 설계에 관한 연구)

  • Kim Won-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.180-185
    • /
    • 2005
  • Microstrip antennas generally have a lot of advantages that are thin profile, lightweight, low cost, and conformability to a shaped surface application with integrated circuitry. In addition to military applications, they have become attractive candidates in a variety of commercial applications such as mobile satellite communications, the direct broadcast system (DBS), global positioning system (GPS), and remote sensing. Recently, many of the researches have been achieved for improving the impedance bandwidth of microstrip antennas. The basic form of the microstrip antenna, consisting of a conducting patch printed on a grounded substrate, has an impedance bandwidth of $1\~2\%$. For improvement of narrow bandwidth of microstrip patch, we were designed U-slot microstrip patch antenna in this paper. This antenna had wide bandwidth for all personal communication services (PCS) and IMT-2000. For the design of U-slot microstrip patch antenna using a finite difference time domain(FDTD) method. This numerical method could get the frequency property of U-slot patch antenna and the electromagnetic fields of slots.

Analysis of the Wave Propagation Characteristic for Pulse Signal on Tapered Microstrip Line in Time Domain (테이퍼형 마이크로스트립 전송선로에서 펄스 신호의 시간 영역 전송특성 해석)

  • Kim Girae;Choi Young-Kvu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.40-44
    • /
    • 2006
  • In this paper, the distortion characteristics of an electrical pulse which has a rise/fall time due to the dispersion and the reflection, on nonuniform tapered microstrip lines has investigated in time domain. The transmission characteristics on uniform microstrip lines in time domain had represented already, but the results for the nonuniform tapered microstrip lines not represented yet. We investigated the transmission characteristics for pulse signal on the nonuniform tapered microstrip lines, and the result applied to design of wide band impedance matching circuit in design of MMIC. The voltage and current transfer functions are shown for the tapered line. The dispersion and distortion obtained by using these transfer functions are represented for the nonideal square pulse.