• Title/Summary/Keyword: microscopy analysis

Search Result 2,702, Processing Time 0.026 seconds

Effects of Cu and K Addition on Catalytic Activity for Fe-based Fischer-Tropsch Reaction (Fe계 Fischer-Tropsch 반응에서 촉매활성에 대한 Cu와 K의 첨가 효과)

  • Lee, Chan Yong;Kim, Eui Yong
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Effects of the Cu and K addition and the reduction condition of Fe-based catalysts for Fischer-Tropsch reaction are studied in a continuous flow reactor in this research. The catalysts for the reaction were prepared by homogeneous precipitation followed by incipient wetness impregnation. Physicochemical properties of the $Al_2O_3$ supported Fe-based catalysts are characterized by various methods including X-ray diffraction (XRD), temperature programmed reduction (TPR), and scanning electron microscopy (SEM). Catalytic activities and stabilities of the Fe/Cu/K catalyst are investigated in time-on-stream for an extended reaction time over 216 h. It is found that a reduction of the catalysts using a mixture of CO and $H_2$ can promote their catalytic activities, attributed to the iron carbides formed on the catalysts surface by X-ray diffraction analysis. The addition of Cu induces a fast stabilization of the reaction reducing the time to reach at the steady state by enhancement of catalytic reduction. The addition of K to the catalysts increases the CO conversion, while the physical stability of catalyst decreases with potassium loading up to 5%. The Fe/Cu (5%)/K (1%) catalyst shows an enhanced long term stability for the Fischer-Tropsch reaction under the practical reaction condition, displaying about 15% decrease in the CO conversion after 120 h of the operation.

Nanolayered CuWO4 Decoration on Fluorine-Doped SnO2 Inverse Opals for Solar Water Oxidation

  • Cho, Ha Eun;Yun, Gun;Arunachalam, Maheswari;Ahn, Kwang-Soon;Kim, Chung Soo;Lim, Dong-Ha;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.282-291
    • /
    • 2018
  • The pristine fluorine-doped $SnO_2$ (abbreviated as FTO) inverse opal (IO) was developed using a 410 nm polystyrene bead template. The nanolayered copper tungsten oxide ($CuWO_4$) was decorated on the FTO IO film using a facile electrochemical deposition, subsequently followed by annealing at $500^{\circ}C$ for 90 min. The morphologies, crystalline structure, optical properties and photoelectrochemical characteristics of the FTO and $CuWO_4$-decorated FTO (briefly denoted as $FTO/CuWO_4$) IO film were investigated by field emission scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and electrochemical impedance spectroscopy, showing FTO IO in the hexagonally closed-pack arrangement with a pore diameter and wall thickness of about 300 nm and 20 nm, respectively. Above this film, the $CuWO_4$ was electrodeposited by controlling the cycling number in cyclic voltammetry, suggesting that the $CuWO_4$ formed during 4 cycles (abbreviated as $CuWO_4$(4 cycles)) on FTO IO film exhibited partial distribution of $CuWO_4$ nanoparticles. Additional distribution of $CuWO_4$ nanoparticles was observed in the case of $FTO/CuWO_4$(8 cycles) IO film. The $CuWO_4$ layer exhibits triclinic structure with an indirect band gap of approximately 2.5 eV and shows the enhanced visible light absorption. The photoelectrochemical (PEC) behavior was evaluated in the 0.5 M $Na_2SO_4$ solution under solar illumination, suggesting that the $FTO/CuWO_4$(4 cycles) IO films exhibit a photocurrent density ($J_{sc}$) of $0.42mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE, denoted as $V_{RHE}$), while the FTO IO and $FTO/CuWO_4$(8 cycles) IO films exhibited a $J_{sc}$ of 0.14 and $0.24mA/cm^2$ at $1.23V_{RHE}$, respectively. This difference can be explained by the increased visible light absorption by the $CuWO_4$ layer and the favorable charge separation/transfer event in the cascading band alignment between FTO and $CuWO_4$ layer, enhancing the overall PEC performance.

Corrosion Behaviors of Dental Implant Alloy after Micro-sized Surface Modification in Electrolytes Containing Mn Ion

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the corrosion behaviors of dental implant alloy after microsized surface modification in electrolytes containing Mn ion. Materials and Methods: $Mn-TiO_2$ coatings were prepared on the Ti-6Al-4V alloy for dental implants using a plasma electrolytic oxidation (PEO) method carried out in electrolytes containing different concentrations of Mn, namely, 0%, 5%, and 20%. Potentiodynamic method was employed to examine the corrosion behaviors, and the alternatingcurrent (AC) impedance behaviors were examined in 0.9% NaCl solution at $36.5^{\circ}C{\pm}1.0^{\circ}C$ using a potentiostat and an electrochemical impedance spectroscope. The potentiodynamic test was performed with a scanning rate of $1.667mV\;s^{-1}$ from -1,500 to 2,000 mV. A frequency range of $10^{-1}$ to $10^5Hz$ was used for the electrochemical impedance spectroscopy (EIS) measurements. The amplitude of the AC signal was 10 mV, and 5 points per decade were used. The morphology and structure of the samples were examined using field-emission scanning electron microscopy and thin-film X-ray diffraction. The elemental analysis was performed using energy-dispersive X-ray spectroscopy. Result: The PEO-treated surface exhibited an irregular pore shape, and the pore size and number of the pores increased with an increase in the Mn concentration. For the PEO-treated surface, a higher corrosion current density ($I_{corr}$) and a lower corrosion potential ($E_{corr}$) was obtained as compared to that of the bulk surface. However, the current density in the passive regions ($I_{pass}$) was found to be more stable for the PEO-treated surface than that of the bulk surface. As the Mn concentration increased, the capacitance values of the outer porous layer and the barrier layer decreased, and the polarization resistance of the barrier layers increased. In the case of the Mn/Ca-P coatings, the corroded surface was found to be covered with corrosion products. Conclusion: It is confirmed that corrosion resistance and polarization resistance of PEO-treated alloy increased as Mn content increased, and PEO-treated surface showed lower current density in the passive region.

Fabrication of carbon nano tube reinforced grass fiber composite and investigation of fracture surface of reinforced composites (CNT 첨가에 따른 유리섬유/섬유 복합재 제작 및 특성 평가)

  • Kim, Hyeongtae;Lee, Do-Hyeon;An, Woo-Jin;Oh, Chang-Hwan;Je, Yeonjin;Lee, Dong-Park;Cho, Kyuchul;Park, Jun Hong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.159-165
    • /
    • 2021
  • The fiber composites have been investigated as lightweight structure material platforms for aerospace applications because their strength can be enhanced by adding reinforcement without a significant increase in weight. In this study, the fabrication and characterization of carbon nanotube (CNT) reinforced glass fiber composites are demonstrated to enhance the tensile strength of longitudinal direction along the glass fibers. Due to the reinforcement of CNT in epoxy layers, the yield strength of fiber/epoxy composites is enhanced by about 10 %. Furthermore, using scanning electron microscopy, analysis of fracture surfaces shows that mixed CNT in epoxy layers acts as necking agents between fractured surfaces of fiber/epoxy; thereby, initiation and evolution of crack across fiber composite can be suppressed by CNT necking between fractured surfaces.

A Study on the Atmospheric Pressure Control of the VARTM Process for Increasing the Fiber Volume Fraction and Reducing Void (섬유부피분율 증가와 공극 감소를 위한 VARTM 공정의 대기압 제어에 관한 연구)

  • Kwak, Seong-Hun;Kim, Tae-Jun;Tak, Yun-Hak;Kwon, Sung-Il;Lee, Jea-Hyun;Kim, Sang-Yong;Lee, Jong-Cheon
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • VARTM (Vacuum-assisted resin transfer molding) process is a low-cost process technology and affiliated with OoA (Out of Autoclave). Besides, it has been widely used in various fields. However, because of its lower quality than the autoclave process, it isn't easy to apply the VARTM process to the aerospace industry, which requires high reliability. The main problem of the VARTM process is the loss of mechanical properties due to the low fiber volume fraction and high void content in comparison to the autoclave. Therefore, many researchers have studied to reduce void and increase fiber volume fraction. This study examines whether the method of controlling atmospheric pressure could increase the fiber volume fraction and reduce void during the resin impregnation process. Reliability evaluation was confirmed by compressive strength test, fiber volume fraction analysis, and optical microscopy. As a result, it was confirmed that increasing the atmospheric pressure step by step in the VARTM process of impregnating the preform with resin effectively increases the fiber volume fraction and reduces void.

Electrochemical Behaviors of Pt-Ru Catalysts on the Surface Treated Mesoporous Carbon Supports for Direct Methanol Fuel Cells (직접메탄올 연료전지용 표면처리된 중형기공 탄소지지체에 담지된 백금-루테늄 촉매의 전기화학적 거동)

  • Kim, Byung-Ju;Seo, Min-Kang;Choi, Kyeong-Eun;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.167-172
    • /
    • 2011
  • In this work, the effect of surface treatment on mesoporous carbons (MCs) supports was investigated by analyzing surface functional groups. MCs were prepared by a conventional templating method using mesoporous silica (SBA-15) for using catalyst supports in direct methanol fuel cells (DMFCs). The MCs were treated with different phosphoric acid ($H_3PO_4$) concentrations i.e., 0, 1, 3, 4, and 5 M at 343 K for 6 h. And then Pt-Ru was deposited onto surface treated MCs (H-MCs) by chemical reduction method. The characteristics of Pt-Ru catalysts deposited onto H-MCs were determined by specific surface area and pore size analyzer, X-ray diffraction, X-ray photoelectron, transmission electron microscopy, and inductive coupled plasma-mass spectrometer. The electrochemical properties of Pt-Ru/H-MCs catalysts were also analyzed by cyclic voltammetry experiments. From the results of surface analysis, an oxygen functional group was introduced to the surface of carbon supports. From the results, the H4M-MCs carbon supports surface treated with 4 M $H_3PO_4$ led to uniform dispersion of Pt-Ru onto H4M-MCs, resulting in enhancing the electro-catalytic activity of Pt-Ru catalysts.

Synthesis and Magnetic Property of Nanocrystalline Fe-Ni-Co Alloys during Hydrogen Reduction of Ni0.5Co0.5Fe2O4 (Ni0.5Co0.5Fe2O4의 수소환원에 의한 나노구조 Fe-Ni-Co 합금의 제조 및 자성특성)

  • Paek, Min Kyu;Do, Kyung Hyo;Bahgat, Mohamed;Pak, Jong Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.167-173
    • /
    • 2011
  • Nickel cobalt ferrite($Ni_{0.5}Co_{0.5}Fe_2O_4$) powder was prepared through the ceramic route by the calcination of a stoichiometric mixture of NiO, CoO and $Fe_2O_3$ at $1100^{\circ}C$. The pressed pellets of $Ni_{0.5}Co_{0.5}Fe_2O_4$ were isothermally reduced in pure hydrogen at $800{\sim}1100^{\circ}C$. Based on the thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and the various reduction products were characterized by X-ray diffraction, scanning electron microscopy, reflected light microscope and vibrating sample magnetometer to reveal the effect of hydrogen reduction on the composition, microstructure and magnetic properties of the produced Fe-Ni-Co alloy. The arrhenius equation with the approved mathematical formulations for the gas solid reaction was applied to calculate the activation energy($E_a$) and detect the controlling reaction mechanisms. In the initial stage of hydrogen reduction, the reduction rate was controlled by the gas diffusion and the interfacial chemical reaction. However, in later stages, the rate was controlled by the interfacial chemical reaction. The nature of the hydrogen reduction and the magnetic property changes for nickel cobalt ferrite were compared with the previous result for nickel ferrite. The microstructural development of the synthesized Fe-Ni-Co alloy with an increase in the reduction temperature improved its soft magnetic properties by increasing the saturation magnetization($M_s$) and by decreasing the coercivity($H_c$). The Fe-Ni-Co alloy showed higher saturation magnetization compared to Fe-Ni alloy.

Effect of vacuum annealing and characterization of diecast ADC12 aluminum alloys (다이캐스팅 공정으로 제조한 ADC12 알루미늄 합금의 물성 향상 및 진공 열처리 효과)

  • Jo, Jihoon;Ham, Daseul;Oh, Seongchan;Cha, Su Yeon;Kang, Hyon Chol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.24-31
    • /
    • 2021
  • We report structural, mechanical, and thermal properties of diecast ADC12 aluminum alloys characterized using synchrotron X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray (EDX) analysis, thermal conductivity (λ), Vickers hardness (Hv), and stress-strain measurements. We also studied the effect of post-annealing performed in a vacuum atmosphere on the mechanical properties of diecast ADC12 alloys. EDX and XRD results revealed that Al2Cu and AlCu3 grains are formed, well dispersed in Al base and highly crystalline. Ultimate tensile strength (UTS) of 307.9 ± 9.1 MPa and elongation of 2.98 ± 0.62 % were estimated. λ was 129.3 ± 0.27 W/m·K and Hv was approximately 130. Both values were significantly higher than the reported values. At annealing temperatures ranging from 25 to 200℃, UTS and Hv values remained constant, while as the annealing temperature increased to 500℃, these values gradually decreased. This is because stabilization of the microstructure improves toughness and ductility.

A Study on the Preparation and Purification Characteristics of Graphene Oxide by Graphite Type (흑연 종류에 따른 산화 그래핀의 제조 및 정제를 통한 특성연구)

  • Jeong, Kyeom;Kim, Young-Ho
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.132-138
    • /
    • 2021
  • Research is being conducted on graphene to provide graphene having both excellent physical as well as electrical properties in addition to unique physical properties. In this study, Hummer's method, which is a representative method for chemical exfoliation, was applied in order to investigate the possibility of the mass production of high-quality graphene oxide. Three types of graphite (graphite, crystalline graphite, and expanded graphite) were used in the preparation of graphene oxide with variations in the amount of potassium permanganate added, reaction temperature, and reaction time. Then a Fourier transform infrared spectroscopy (FT-IR), a Raman spectrometer, and a transmission electron microscope (TEM) were used to measure the quality of the prepared graphene oxide. Of the three types of graphite used in this experiment, crystalline graphite showed the highest quality. The prepared graphene oxide was then purified with an organic solvent, and an analysis conducted using energy dispersive X-ray spectroscopy (EDS). From the results of the residual values, we were able to confirm that both acid wastewater and wastewater were best purified using cyclohexane. The method for manufacturing graphene oxide as well as the method of purification using organic solvents that are presented in this study are expected to have less of an environmental impact, making them environmentally friendly. This makes them suitable for use in various industrial fields such as the film industry and for heat dissipation and as coating agents.

A Study on the Microstructure and Magnetic Properties of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 Nanocrystalline Soft Magnetic Alloys with varying P Content (Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 나노결정질 연자성 합금의 P함량에 따른 미세구조 및 자기적 특성 변화 관찰에 관한 연구)

  • Im, Hyun Ah;Bae, Kyoung-Hoon;Nam, Yeong gyun;An, Subong;Yang, Sangsun;Kim, Yong-Jin;Lee, Jung Woo;Jeong, Jae Won
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.293-300
    • /
    • 2021
  • We investigate the effect of phosphorous content on the microstructure and magnetic properties of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 (x = 1-4 at.%) nanocrystalline soft magnetic alloys. The simultaneous addition of Cu and P to nanocrystalline alloys reportedly decreases the nanocrystalline size significantly, to 10-20 nm. In the P-containing nanocrystalline alloy, P atoms are distributed in an amorphous residual matrix, which suppresses grain growth, increases permeability, and decreases coercivity. In this study, nanocrystalline ribbons with a composition of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 (x = 1-4 at.%) are fabricated by rapid quenching melt-spinning and thermal annealing. It is demonstrated that the addition of a small amount of P to the alloy improves the glass-forming ability and increases the resistance to undesirable Fex(B,P) crystallization. Among the alloys investigated in this work, an Fe83.2Si5B10P1Cu0.8 nanocrystalline ribbon annealed at 460℃ exhibits excellent soft-magnetic properties including low coercivity, low core loss, and high saturation magnetization. The uniform nanocrystallization of the Fe83.2Si5B10P1Cu0.8 alloy is confirmed by high-resolution transmission electron microscopy analysis.