Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2021.31.4.159

Fabrication of carbon nano tube reinforced grass fiber composite and investigation of fracture surface of reinforced composites  

Kim, Hyeongtae (School of Materials Science and Engineering, Gyeongsang National University)
Lee, Do-Hyeon (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
An, Woo-Jin (School of Mechanical Engineering, Gyeongsang National University)
Oh, Chang-Hwan (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Je, Yeonjin (School of Materials Science and Engineering, Gyeongsang National University)
Lee, Dong-Park (School of Materials Science and Engineering, Gyeongsang National University)
Cho, Kyuchul (Hangookprop Corporation)
Park, Jun Hong (School of Materials Science and Engineering, Gyeongsang National University)
Abstract
The fiber composites have been investigated as lightweight structure material platforms for aerospace applications because their strength can be enhanced by adding reinforcement without a significant increase in weight. In this study, the fabrication and characterization of carbon nanotube (CNT) reinforced glass fiber composites are demonstrated to enhance the tensile strength of longitudinal direction along the glass fibers. Due to the reinforcement of CNT in epoxy layers, the yield strength of fiber/epoxy composites is enhanced by about 10 %. Furthermore, using scanning electron microscopy, analysis of fracture surfaces shows that mixed CNT in epoxy layers acts as necking agents between fractured surfaces of fiber/epoxy; thereby, initiation and evolution of crack across fiber composite can be suppressed by CNT necking between fractured surfaces.
Keywords
CNT; Glass fiber composite; Tensile strength; Epoxy; Necking;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Gao, J. Zhang, D. Lei, Z. Guo, S. Zhang, Y. Song, J. Wang and K. Kou, "Ferrocene decorative phenolic epoxy resin as lightweight thermal-stable dielectric relaxor for electromagnetic wave absorption", Composites Communications 22 (2020) 100472.   DOI
2 Y.T. Du, C.P. Song, J. Xiong and L.Z. Wu, "Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami", Composites Science and Technology 74 (2019) 94.
3 M. Shariati, G. Farzi and A. Dadrasi, "Mechanical properties and energy absorption capability of thin-walled square columns of silica/epoxy nanocomposite", Constr Build Mater 78 (2015) 362.   DOI
4 A.A. Adebisi, M.A. Maleque and Q.H. Shah, "Performance assessment of aluminium composite material for automotive brake rotor", International Journal of Vehicle Systems Modelling and Testing 9 (2014) 207.   DOI
5 G.C. Jacob, J.F. Fellers, S. Simunovic and J.M. Starbuck, "Energy absorption in polymer composites for automotive crashworthiness", Journal of Composite Materials 36 (2002) 813.   DOI
6 S. Endo, M. Sato, Y. Bu and T. Mizuno, "Improving transmission efficiency with magnetic coating technology for lightweight wireless power transfer coil using aluminum plate", Journal of the Magnetics Society of Japan 43 (2019) 125.   DOI
7 M. Juraeva, K.J. Ryu, S.H. Noh and D.J. Song, "Light-weight material for the speed reducer housing of a car chassis", J. Mech. Sci. Technol. l31 (2017) 3219.
8 P. Rosso, L. Ye, K. Friedrich and S. Sprenger, "A toughened epoxy resin by silica nanoparticle reinforcement", Journal of Applied Polymer Science 100 (2006) 1849.   DOI
9 L.M. Gao, T.W. Chou, E.T. Thostenson, Z.G. Zhang and M. Coulaud, "In situ sensing of impact damage in epoxy/glass fiber composites using percolating carbon nanotube networks", Carbon 49 (2011) 3382.   DOI
10 A.O. Fulmali, B. Sen, B.C. Ray and R.K. Prusty, "Effects of carbon nanotube/polymer interfacial bonding on the long-term creep performance of nanophased glass fiber/epoxy composites", Polym Composite 41 (2020) 478.   DOI
11 J. Liu, T. Ma, H. Tong, W. Luo and M. Yan, "Electromagnetic wave absorption properties of flaky Fe-Ti-SiAl nanocrystalline composites", Journal of Magnetism and Magnetic Materials 322 (2010) 940.   DOI
12 J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit and L. Zuppiroli, "Mechanical properties of carbon nanotubes", Applied Physics A 69 (1999) 255.   DOI
13 M.C. Weisenberger, E.A. Grulke, D. Jacques, A.T. Rantell and R. Andrewsa, "Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers", Journal of Nanoscience and Nanotechnology 3 (2003) 535.   DOI
14 H. Luo, D. Zhang, C. Jiang, X. Yuan, C. Chen and K. Zhou, "Improved dielectric properties and energy storage density of poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite with hydantoin epoxy resin coated BaTiO3", ACS Applied Materials & Interfaces 7 (2015) 8061.   DOI
15 Y. Hua, F. Li, Y. Liu, G.W. Huang, H.M. Xiao, Y.Q. Li, N. Hu and S.Y. Fu, "Positive synergistic effect of graphene oxide/carbon nanotube hybrid coating on glass fiber/epoxy interfacial normal bond strength", Composites Science and Technology 149 (2017) 294.   DOI
16 B. Yazdani, Y.D. Xia, I. Ahmad and Y.Q. Zhu, "Graphene and carbon nanotube (GNT)-reinforced alumina nano-composites", J. Eur. Ceram. Soc. 35 (2015) 179.   DOI
17 E. Yousefi, A. Sheidaei, M. Mahdavi, M. Baniassadi, M. Baghani and G. Faraji, "Effect of nanofiller geometry on the energy absorption capability of coiled carbon nanotube composite material", Composites Science and Technology 153 (2017) 222.   DOI
18 A. Omrani, L.C. Simon and A.A. Rostami, "The effects of alumina nanoparticle on the properties of an epoxy resin system", Materials Chemistry and Physics 114 (2009) 145.   DOI
19 P.K. Roy, A.V. Ullas, S. Chaudhary, V. Mangla, P. Sharma, D. Kumar and C. Rajagopal, "Effect of SBA-15 on the energy absorption characteristics of epoxy resin for blast mitigation applications", Iranian Polymer Journal 22 (2013) 709.   DOI
20 B. Hornbostel, U. Leute, P. Potschke, J. Kotz, D. Kornfeld, P.W. Chiu and S. Roth, "Attenuation of electromagnetic waves by carbon nanotube composites", Physica E 40 (2008) 2425.
21 Z.P. Wu, M.M. Li, Y.Y. Hu, Y.S. Li, Z.X. Wang, Y.H. Yin, Y.S. Chen and X.A. Zhou, "Electromagnetic interference shielding of carbon nanotube macrofilms", Scripta Mater 64 (2011) 809.   DOI
22 P.F. Wang, X. Zhang, G.H. Lim, H.S. Neo, A.A. Malcolm, Y. Xiang, G.X. Lu and J.L. Yang, "Improvement of impact-resistant property of glass fiber-reinforced composites by carbon nanotube-modified epoxy and pre-stretched fiber fabrics", Journal of Materials Science 50 (2015) 5978.   DOI
23 M.A. Seo, J.H. Yim, Y.H. Ahn, F. Rotermund, D.S. Kim, S. Lee and H. Lim, "Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films", Applied Physics Letters 93 (2008) 231905.   DOI
24 G.C. Jacob, J.F. Fellers, J.M. Starbuck and S. Simunovic, "Crashworthiness of automotive composite material systems", Journal of Applied Polymer Science 92 (2004) 3218.   DOI
25 J. Huo, L. Wang and H. Yu, "Polymeric nanocomposites for electromagnetic wave absorption", Journal of Materials Science 44 (2009) 3917.   DOI
26 V. Lordi and N. Yao, "Molecular mechanics of binding in carbon-nanotube-polymer composites", Journal of Materials Research 15 (2000) 2770.   DOI
27 C.S. Grimmer and C.K.H. Dharan, "Enhancement of delamination fatigue resistance in carbon nanotube reinforced glass fiber/polymer composites", Composites Science and Technology 70 (2010) 901.   DOI
28 J. Zhu, A. Imam, R. Crane, K. Lozano, V.N. Khabashesku and E.V. Barrera, "Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength", Composites Science and Technology 67 (2007) 1509.   DOI