• Title/Summary/Keyword: microscopic analysis

Search Result 1,080, Processing Time 0.027 seconds

A Glance of Electron Tomography through 4th International Congress on Electron Tomography (International Congress on Electron Tomography에 대한 간략한 이해와 현황)

  • Rhyu, Im-Joo;Park, Seung-Nam
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.275-278
    • /
    • 2008
  • Electron tomography (ET) is an electron microscopic technique for obtaining a 3-D image from any electron microscopy specimen and its application in biomedical science has been increased thanks to development of electron microscopy and related technologies during the last decade. There are few researches on ET in Korea during this period. Although the importance of ET has been recognized recently by many researchers, initial approach to electron tomographic research is not easy for beginners. The 4th International Congress on Electron Tomography (4 ICET) was held on Nov $5{\sim}8$, 2006, at San Diego. The program dealt instrumentation, reconstruction algorithm, visualization/quantitative analysis and electron tomographic presentation of biological specimen and nano particles. 1 have summarized oral presentations and analyzed the posters presented on the meeting. Cryo-electron microscopic system was popular system for ET and followed conventional transmission electron microscopic system. Cultured cell line and tissue were most popular specimens analyzed and microorganisms including bacteria and virus also constituted important specimens. This analysis provides a current state of art in ET research and a guide line for practical application of ET and further research strategies.

Microscopic Traffic Analysis of Freeway Based on Vehicle Trajectory Data Using Drone Images (드론 영상을 활용한 차량궤적자료 기반 고속도로 미시적 교통분석)

  • Ko, Eunjeong;Kim, Soohee;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.66-83
    • /
    • 2021
  • Vehicles experience changes in driving behavior due to the various facilities on the freeway. These sections may cause repetitive traffic congestion when the traffic volume increases, so safety issues may be raised. Therefore, the purpose of this study is to perform microscopic traffic analysis on these sections using drone images and to identify the causes of traffic problems. In the case of drone image, since trajectory data of individual vehicles can be obtained, empirical analysis of driving behavior is possible. The analysis section of this study was selected as the weaving section of Pangyo IC and the sag section of Seohae Bridge. First, the trajectory data was extracted through the drone image. And the microscopic traffic analysis performed on the speed, density, acceleration, and lane change through cell-unit analysis using Generalized definition method. This analysis results can be used as a basic study to identify the cause of the problem section in the freeway. Through this, we aim to improve the efficiency and convenience of traffic analysis.

Synthesis, Spectral Characterization, Electron Microscopic Study and Influence on the Thermal Stability of Phosphorus-containing Dendrimer with a 4,4'-Sulphonyldiphenol at the Core

  • Dadapeer, Echchukattula;Rasheed, Syed;Raju, Chamarthi Naga
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.498-502
    • /
    • 2011
  • The divergent synthesis of novel phosphorus-containing dendrimer with 4,4'-sulphonyldiphenol at the core has been accomplished involving simple condensation reactions using $P(O)Cl_3$, $P(S)Cl_3$, 3-amino-phenol, 3-hydroxy-benzaldehyde, and 2-butyn 1, 4-diol. The final compound was a Schiff's base macromolecule possessing 4 imine bonds, 8 acetylenic bonds and 8 OH groups at the periphery. The structures of intermediate compounds were confirmed by IR, NMR ($^1H$, $^{13}C$ and $^{31}P$), LC-Mass and C, H, N analysis. The structure of the final dendrimer (5) was confirmed by IR, NMR ($^1H$, $^{13}C$ and $^{31}P$), MALDI-TOF-MS, and C, H, N analysis. The surface morphological characteristics of the final dendrimer were understood by Scanning Electronic Microscopic study (SEM). The thermal stability of the final dendrimer was studied by TGA/DTA analysis.

Microscopic analysis of metal matrix composites containing carbon Nanomaterials

  • Daeyoung Kim;Hye Jung Chang;Hyunjoo Choi
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.4.1-4.10
    • /
    • 2020
  • Metallic matrix composites reinforced with carbon nanomaterials continue to attract interest because of their excellent mechanical, thermal, and electrical properties. However, two critical issues have limited their commercialization. Uniform distribution of carbon nanomaterials in metallic matrices is difficult, and the interfaces between the nanomaterials and matrices are weak. Microscope-based analysis was recently used to quantitatively examine these microstructural features and investigate their contributions to the composites' mechanical, thermal, and electrical properties. The impacts of the microstructure on these properties are discussed in the first section of this review. In the second section, the various microscopic techniques used to study the distribution of carbon nanomaterials in metallic matrices and their interfaces are described.

Identification of Ruditapes philippinarum and Meretrix lusoria Larvae Using Single Cell PCR Analysis and Microscopic Observation (Single Cell PCR과 현미경을 통한 바지락 및 백합 유생의 동정)

  • Jung, Seung-Won;Kim, Chang-Soo;Yoo, Jae-Won;Kim, Young-Ok;Lee, Jin-Hwan;Hong, Jae-Sang
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.247-254
    • /
    • 2010
  • Single cell PCR analysis and light and scanning electron microscopic techniques were utilized to identify free living bivalve larvae in the coastal waters of Tae-an, on the west coast of Korea. Through DNA sequencing, venerid clam larvae were isolated and identified as Ruditapes philippinarum (99% similarity) and Meretrix lusoria (99%). Under microscopic observation, the D-veliger stage of R. philippinarum exhibited symmetrical shoulder angles and an elliptical ventral form. In contrast, M. lusoria displayed asymmetrical shoulder angles and a round ventral form in the umbonal stage. Size of the R. philippinarum larvae was $156{\pm}22{\mu}m$ in length, $126{\pm}12{\mu}m$ in height, $92{\pm}14{\mu}m$ in width with a length: height ratio of 1.23. Meretrix lusoria was $202{\pm}44{\mu}m$ in length, $161{\pm}35{\mu}m$ in height, $96{\pm}38{\mu}m$ in width with a length: height ratio of 1.25. Experimental results indicate that morphological and molecular characteristics provide evidence for the larval identification of these two venerid clam larvae species in nature.

A Study on Traffic Impact Assessment Method using Microscopic Simulation Model (미시적 교통류 시뮬레이션을 활용한 교통영향평가 분석기법 개선방안)

  • Shin, Dae-Sup;Lee, Seon-Ha
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • Traffic flow which is prescribed under previous traffic effect/access act is analyzed by traffic volume, V/C, mean speed on road and LOS on the intersection. These indexes based on analytical method can not consider stochastic characteristics of traffic flow. Moreover it is hard to analyze traffic flow visually in whole traffic effect area because only individual road and intersections are targeted. In this study, it is devised to show traffic flow analysis method within traffic effect area visually applying microscopic-simulation by car-following theory, and then based on this, effect analyze ways are studied according to space range plan, improvement measure establishment and etc. To execute this study, effect area is set up using V/C, and the change of traffic current around development area is analyzed using microscopic-simulation program.

Comparison Study of O/D Estimation Methods for Building a Large-Sized Microscopic Traffic Simulation Network: Cases of Gravity Model and QUEEENSOD Method (대규모 미시교통시뮬레이션모형 구축을 위한 O/D 추정 방법 성능 비교 - 중력모형과 QUEENSOD 방법을 중심으로 -)

  • Yoon, Jung Eun;Lee, Cheol Ki;Lee, Hwan Pil;Kim, Kyung Hyun;Park, Wonil;Yun, Ilsoo
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.91-101
    • /
    • 2016
  • PURPOSES : The aim of this study was to compare the performance of the QUEENSOD method and the gravity model in estimating Origin-Destination (O/D) tables for a large-sized microscopic traffic simulation network. METHODS : In this study, an expressway network was simulated using the microscopic traffic simulation model, VISSIM. The gravity model and QUEENSOD method were used to estimate the O/D pairs between internal and between external zones. RESULTS: After obtaining estimations of the O/D table by using both the gravity model and the QUEENSOD method, the value of the root mean square error (RMSE) for O/D pairs between internal zones were compared. For the gravity model and the QUEENSOD method, the RMSE obtained were 386.0 and 241.2, respectively. The O/D tables estimated using both methods were then entered into the VISSIM networks and calibrated with measured travel time. The resulting estimated travel times were then compared. For the gravity model and the QUEENSOD method, the estimated travel times showed 1.16% and 0.45% deviation from the surveyed travel time, respectively. CONCLUSIONS : In building a large-sized microscopic traffic simulation network, an O/D matrix is essential in order to produce reliable analysis results. When link counts from diverse ITS facilities are available, the QUEENSOD method outperforms the gravity model.

Analysis on Interactions of Creativity Homogeneous and Heterogeneous Team in Creative Robot Making and Programming Activities (창작 로봇 제작 및 프로그래밍 활동에서 창의성 동질 및 이질 팀 구성에 따른 팀 상호작용 분석)

  • Jo, Hanjin;Kim, Minwoong;Wi, Sunbok;Kim, Taehoon
    • Journal of Engineering Education Research
    • /
    • v.19 no.5
    • /
    • pp.13-24
    • /
    • 2016
  • The purpose of this research is to examine the characteristics of team interaction according to the creativity of team members. Research subjects to achieve this purpose included 28 students who are in engineering education in the College of Education at A University in Daejeon and have taken robot-related courses. Through first and second MBTI, and TTCT tests, the final homogeneous and heterogeneous teams were formed, and an experimental study was conducted by developing team design activity assignment. The major research results were as follows. In terms of a comprehensive view on interaction frequency, both homogeneous team and heterogeneous team suggested had the highest frequency in suggesting opinions. However, each of the team members in the homogeneous team had different communication frequency among each other while each team member in the heterogeneous team had almost similar frequency. A microscopic analysis of the communication process of homogeneous team showed that the team members' roles were divided among each other in communication. Next, according to the microscopic analysis of the heterogeneous team's communication process, the team members exchanged opinions in the beginning, talked to themselves in words that were hard to understand the meanings, and they stopped having conversations in the end. Due to such decrease in communication, two team members could not solve the confusing state of being unable to understand each other's opinions and failed to complete their assignments. The microscopic analysis demonstrated that the homogeneous team had a smooth interaction, because when one team member suggested an opinion during a conversation, other team members agreed with it through a discussion. However, the members in the heterogeneous team experienced confusion as they could not understand each other's conversation and could not overcome this problem, leading to lack of conversations.

Microscopic Analysis of High Lithium-Ion Conducting Glass-Ceramic Sulfides

  • Park, Mansoo;Jung, Wo Dum;Choi, Sungjun;Son, Kihyun;Jung, Hun-Gi;Kim, Byung-Kook;Lee, Hae-Weon;Lee, Jong-Ho;Kim, Hyoungchul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.568-573
    • /
    • 2016
  • We explore the crystalline structure and phase transition of lithium thiophosphate ($Li_7P_3S_{11}$) solid electrolyte using electron microscopy and X-ray diffraction. The glass-like $Li_7P_3S_{11}$ powder is prepared by the high-energy mechanical milling process. According to the energy dispersive X-ray spectroscopy (EDS) and selected area diffraction (SAD) analysis, the glass powder shows chemical homogeneity without noticeable contrast variation at any specific spot in the specimen and amorphous SAD ring patterns. Upon heating up to $260^{\circ}C$ the glass $Li_7P_3S_{11}$ powder becomes crystallized, clearly representing crystal plane diffraction contrast in the high-resolution transmission electron microscopy image. We further confirm that each diffraction spot precisely corresponds to the diffraction from a particular $Li_7P_3S_{11}$ crystallographic structure, which is also in good agreement with the previous X-ray diffraction results. We expect that the microscopic analysis with EDS and SAD patterns would permit a new approach to study in the atomic scale of other lithium ion conducting sulfides.

Cell Image Processing Methods for Automatic Cell Pattern Recognition and Morphological Analysis of Mesenchymal Stem Cells - An Algorithm for Cell Classification and Adaptive Brightness Correction -

  • Lim, Kitaek;Park, Soo Hyun;Kim, Jangho;SeonWoo, Hoon;Choung, Pill-Hoon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • Purpose: The present study aimed at image processing methods for automatic cell pattern recognition and morphological analysis for tissue engineering applications. The primary aim was to ascertain the novel algorithm of adaptive brightness correction from microscopic images for use as a potential image analysis. Methods: General microscopic image of cells has a minor problem which the central area is brighter than edge-area because of the light source. This may affect serious problems to threshold process for cell-number counting or cell pattern recognition. In order to compensate the problem, we processed to find the central point of brightness and give less weight-value as the distance to centroid. Results: The results presented that microscopic images through the brightness correction were performed clearer than those without brightness compensation. And the classification of mixed cells was performed as well, which is expected to be completed with pattern recognition later. Beside each detection ratio of hBMSCs and HeLa cells was 95% and 92%, respectively. Conclusions: Using this novel algorithm of adaptive brightness correction could control the easier approach to cell pattern recognition and counting cell numbers.