• Title/Summary/Keyword: micromirror array

Search Result 24, Processing Time 0.02 seconds

Development of Projection Scanbeam-SLA using Liquid Crystal Display and Visible Light Emitting Diode (LCD와 가시광선 LED를 사용한 전사방식의 Scanbeam-SLA 개발)

  • Yoon, Su Hyun;Park, In Baek;Kim, Min Sub;Jo, Kwang Ho;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.340-348
    • /
    • 2013
  • In Projection Stereolithography Apparatus (PSLA), Digital Micromirror Device (DMD) and Liquid Crystal Display (LCD) are used as a beam pattern generator. The DMD shows high resolution, but it is mostly applied in micro stereolithography due to high cost and fabricable area. In LCD, the size of pattern beam is freely controlled due to various panel sizes. The LCD, however, has some limitations such as short life time by the high power light source, non-uniform light intensity of pattern beam and low transmittance of UV-light. To solve these problems in LCD-based PSLA, a Scanbeam-SLA with LCD of 19 inches and visible LED-array is developed. In this system, the light module works like a scanner for uniform illumination. The system configuration, working principle and fabrication examples are addressed in this study.

Wafer-Level Fabrication of a Two-Axis Micromirror Driven by the Vertical Comb Drive (웨이퍼 레벨 공정이 가능한 2축 수직 콤 구동 방식 마이크로미러)

  • Kim, Min-Soo;Yoo, Byung-Wook;Jin, Joo-Young;Jeon, Jin-A;Park, Il-Heung;Park, Jae-Hyoung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.148-149
    • /
    • 2007
  • We present the design and fabrication prcoess of a two-axis tilting micromirror device driven by the electrostatic vertical comb actuator. A high aspect-ratio comb actuator is fabricated by multiple DRIE process in order to achieve large scan angle. The proposed fabrication process enables a mirror to be fabricated on the wafer-scale. By bonding a double-side polished (DSP) wafer and a silicon-on-insulator (SOI) wafer together, all actuators on the wafer are completely hidden under the reflectors. Nickel lines are embedded on a Pyrex wafer for the electrical access to numerous electrodes of mirrors. An anodic bonding step is implemented to contact electrical lines with ail electrodes on the wafer at a time. The mechanical angle of a fabricated mirror has been measured to be 1.9 degree and 1.6 degree, respectively, in the two orthogonal axes under driving voltages of 100 V. Also, a $8{\times}8$ array of micromirrors with high fill-factor of 70 % is fabricated by the same fabrication process.

  • PDF

A Study on the Laser Direct Imaging for FPD ( I ) (평판 디스플레이용 Laser Direct Imaging에 관한 연구( I ))

  • Kang, H.S.;Kim, K.R.;Kim, H.W.;Hong, S.K.
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2005.11a
    • /
    • pp.37-41
    • /
    • 2005
  • When screen size of the Flat Panel Display (FPD) becomes larger, the traditional photo-lithography using photomasks and UV lamps might not be possible to make patterns on Photo Resist (PR) material due to limitation of the mask size. Though the maskless photo-lithography using UV lasers and scanners had been developed to implement large screen display, it was very slow to apply the process for mass-production systems. The laser exposure system using 405 nm semi-conductor lasers and Digital Micromirror Devices (DMD) has been developed to overcome above-mentioned problems and make more than 100 inches FPD devices. It makes very fine patterns for full HD display and exposes them very fast. The optical engines which contain DMD, Micro Lens Array (MLA) and projection lenses are designed for 10 to 50 ${\mu}m$ bitmap pattern resolutions. The test patterns for LCD and PDP displays are exposed on PR and Dry Film Resists (DFR) which are coated or laminated on some specific substrates and developed. The fabricated edges of the sample patterns are well-defined and the results are satisfied with tight manufacturing requirements.

  • PDF

Preconditions for High Speed Confocal Image Acquisition with DMD Scanning.

  • Shim, S.B.;Lee, K.J.;Lee, J.H.;Hwang, Y.H.;Han, S.O.;Pak, J.H.;Choi, S.E.;Milster, Tom D.;Kim, J.S.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.39-40
    • /
    • 2006
  • Digital image-projection and several modifications are the classical applications of Digital Micromirror Devices (DMD), however further applications in the field of optical metrology are also available. Operated with certain patterns, a DMD can function, for instance, as an array of pinholes that may substitute the Galvanic mirror or the stage scanning system presently used for 2 dimensional scanning in confocal microscopes. The various process parameters that influence the result of measurement (e.g. pinhole size, lateral scanning pitch and the number of pinholes used simultaneously, etc.) should be configured precisely for individual measurements by appropriately operating the DMD. This paper presents suitable conditions for the diffraction limited analysis between DMD-optics-CCD to achieve the best performance. Also sampling theorem that is necessary for the image acquisition by scanning system is simulated with OPTISCAN which is the simulator based on the diffraction theory.

  • PDF