• Title/Summary/Keyword: micromachining technology

Search Result 232, Processing Time 0.036 seconds

Micromachining of Pyrex Class for Accelerometer (가속도 센서용 파이렉스 유리의 미세가공)

  • 김광현;최영현;최종순;박동삼;유우식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.268-273
    • /
    • 2002
  • The mechanical etching technique has recently been developed to a powder blasting technique for various materials, capable of producing micro structures larger than 100$\mu\textrm{m}$. This paper describes the performance of powder blasting technique in micromachining of pyrex for the accelerometer sensor and the effect of the number of nozzle scanning and the stand-off distance on the erosion depth.

  • PDF

Fabrication of Uncooled Pyroelectric Infrared Detector using Surface M Micromachining Technology (표면 마이크로 가공기술을 이용한 비냉각 초전형 적외선 검출소자 제작)

  • 장철영;고성용;이석헌;김동진;김진섭;이재신;이정희;한석룡;이용현
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.115-118
    • /
    • 2000
  • Uncooled pyroelectric infrared detectors based on BST(B $a_{-x}$S $r_{x}$Ti $O_3$) thin films have been fabricated by RF magnetron sputtering and surface Micromachining technology. The detectors form BST thin film ferroelectric capacitors grown by RF magnetron sputtering on N/O/N(S $i_3$ $N_4$/ $SiO_2$/S $i_3$ $N_4$) membrane. The sputtered BST thin film exhibits highly c-axis oriented crystal structure that no poling treatment for sensing applications is required. This is an essential factor to increase the yield for realization of an infrared image sensor. surface-Micromachining technology is used to lower the thermal mass of the detector by giving maximum sensor efficiency Gold-black is evaporated on top of the sensing elements used the thermal evaporator. fabricated uncooled pyroelectric infrared detectors is highly output voltage at the low temperature(1$^{\circ}C$).).).

  • PDF

Micromachining technology using photosensitive glass (감광성유리를 이용한 마이크로머시닝 기술)

  • Cho, Soo-Je
    • Laser Solutions
    • /
    • v.14 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • Micromachining of photosensitive glass by UV exposure, heat treatment, and etching processes is reported. Like photoresist, the photosensitive glass is also classified into positive and negative types by development characteristics. For the positive type, the exposed area is crystallized and etched away during the etching process in HF solution, whereas the unexposed area is crystallized and etched away for the negative type. The crystallized area of the photosensitive glass has an etch rate approximately 30~100 times faster than that of the amorphous area so that it becomes possible to fabricate microstructures in the glass. Based on the unique properties of glass such as high optical transparency, electrical insulation, and chemical/thermal stability, the glass micromachining technique introduced in this work could be widely applied to various devices in the fields of electronics, bio engineering, nanoelectonics and so on.

  • PDF

fabrication of the Large Area Silicon Mirror for Slim Optical Pickup Using Micromachining Technology (미세가공기술을 이용한 초소형 광픽업용 대면적 실리콘 미러 제작)

  • Park Sung-Jun;Lee Sung-Jun;Choi Seog-Moon;Lee Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.89-96
    • /
    • 2006
  • In this study, fabrication of the large area silicon mirror is accomplished by anisotropic wet etching using micromachining technology for implementation of integrated slim optical pickup and the process condition is also established for improving the mirror surface roughness. Until now, few results have been reported about the production of highly stepped $9.74^{\circ}$ off-axis-cut silicon wafers using wet etching. In addition rough surface of the mirror is achieved in case of tong etching time. Hence a novel method called magnetorheolocal finishing is applied to enhance the surface quality of the mirror plane. Finally, areal peak to valley surface roughness of mirror plane is reduced about 100nm in large area of $mm^2$ and it is applicable to optical pickup using infrared wavelength.

Fabrication of MEMS Devices Using SOI(Silicon-On-Insulator)-Micromachining Technology (SOI(Silicon-On-Insulator)- Micromachining 기술을 이용한 MEMS 소자의 제작)

  • 주병권;하주환;서상원;최승우;최우범
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.874-877
    • /
    • 2001
  • SOI(Silicon-On-Insulator) technology is proposed as an alternative to bulk silicon for MEMS(Micro Electro Mechanical System) manufacturing. In this paper, we fabricated the SOI wafer with uniform active layer thickness by silicon direct bonding and mechanical polishing processes. Specially-designed electrostatic bonding system is introduced which is available for vacuum packaging and silicon-glass wafer bonding for SOG(Silicon On Glass) wafer. We demonstrated thermopile sensor and RF resonator using the SOI wafer, which has the merits of simple process and uniform membrane fabrication.

  • PDF

Determination of Optimal Excimer Laser Ablation Conditions Using Genetic Algorithm (유전자 알고리즘을 이용한 엑시머 레이저가공의 최적조건 선정)

  • 배창현;최경현;이석희
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.17-23
    • /
    • 2002
  • A new 3D micromachining method called Hole Area Modulation(HAM), has been introduced to enhance the current micromachining technology. In this method, information on the depth of machining is converted to the sizes of small holes in the mask. The machining is carried out with a simple 2D movement of the workpiece. This method can be applied for machining various kinds of microcavities in various materials. In this paper, a machematical model for excimer laser micromachining based on HAM and also determination of optimal laser ablation conditions(width hole radius, step size, path, etc.) is performed by Genetic Algorithm(GA).

Simulation of Laser Micro Patterning Process Using FEM (유한요소법을 이용한 레이저 미세 패터닝 공정 해석)

  • Lee J. H.;Kim B. H.;Lee J. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.54-58
    • /
    • 2005
  • Femtosecond laser is the latest generation pulsed laser delivering shortest pulses. Any solid materials can be machined by it. Femtosecond laser micromachining allows highest precision and minimal heat influence within the workpiece. But due to the complex physical phenomena between the laser beam and the workpiece materials, it is very difficult to determine the optimal process conditions in the femtosecond laser micromachining. In this study, a method to simulate the femtosecond laser micromachining process was proposed. And femtosecond laser micro patterning processes of chromium thin film are simulated by the proposed method using a commercial FE code, LS-Dyna. Simulation results were compared with those of experiments.

  • PDF

Fabrication of Electro-optical Microlens Using Micromachining Technology (마이크로머시닝 기술을 이용한 전자 광학 렌즈의 제작)

  • Lee, Yong-Jae;Chun, Kuk-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.413-415
    • /
    • 1996
  • This paper presents a technique for fabricating an electro-optical microlens for microcolumn e-beam system. The device, named Self-Aligned Microlens (SAM) was realized by mixing surface and bulk micromachining technology. The microbridges were formed on both sides of silicon wafer symmetrically. The alignment error between the electrodes could be controlled within a few micrometers with also reducing the numbers of anodic bonding.

  • PDF

Rapid Prototyping of Polymer Microfluidic Devices Using CAD/CAM Tools for Laser Micromachining

  • Iovenitti, Pio G.;Mutapcic, Emir;Hume, Richard;Hayes, Jason P.
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.183-192
    • /
    • 2006
  • A CAD/CAM system has been developed for rapid prototyping (RP) of microfluidic devices based on excimer laser micromachining. The system comprises of two complementary softwares. One, the CAM tool, creates part programs from CAD models. The other, the Simulator Tool, uses a part program to generate the laser tool path and the 2D and 3D graphical representation of the machined microstructure. The CAM tool's algorithms use the 3D geometry of a microstructure, defined as an STL file exported from a CAD system, and process parameters (laser fluence, pulse repetition frequency, number of shots per area, wall angle), to automatically generate Numerical Control (NC) part programs for the machine controller. The performance of the system has been verified and demonstrated by machining a particle transportation device. The CAM tool simplifies part programming and replaces the tedious trial-and-error approach to creating programs. The simulator tool accepts manual or computer generated part programs, and displays the tool path and the machined structure. This enables error checking and editing of the program before machining, and development of programs for complex microstructures. Combined, the tools provide a user-friendly CAD/CAM system environment for rapid prototyping of microfluidic devices.

Design, Fabrication, Static Test and Uncertainty Analysis of a Resonant Microaccelerometer Using Laterally-driven Electrostatic Microactuator (수평구동형 정전 액추에이터를 이용한 금속형 공진가속도계의 설계, 제작, 정적시험 및 오차분석)

  • Seo, Yeong-Ho;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.520-528
    • /
    • 2001
  • This paper investigates a resonant microaccelerometer that measures acceleration using a built-in micromechanical resonator, whose resonant frequency is changed by the acceleration-induced axial force. A set of design equations for the resonant microaccelerometer has been developed, including analytic formulae for resonant frequency, sensitivity, nonlinearity and maximum stress. On this basis, the sizes of the accelerometer are designed for the sensitivity of 10$^3$Hz/g in the detection range of 5g, while satisfying the conditions for the maximum nonlinearity of 5%, the minimum shock endurance of 100g and the size constraints placed by microfabrication process. A set of the resonant accelerometers has been fabricated by the combined use of bulk-micromachining and surface-micromachining techniques. From a static test of the cantilever beam resonant accelerometer, a frequency shift of 860Hz has been measured for the proof-mass deflection of 4.3${\pm}$0.5$\mu\textrm{m}$; thereby resulting in the detection sensitivity of 1.10${\times}$10$^3$Hz/g. Uncertainty analysis of the resonant frequency output has been performed to identify important issues involved in the design, fabrication and testing of the resonant accelerometer.