• Title/Summary/Keyword: microcapsules

Search Result 254, Processing Time 0.021 seconds

Study of Dye Encapsulated Microcapsule Polymerization Using Styrene Monomer (스타이렌 모노머를 이용한 색소 담지 마이크로캡슐의 제조)

  • Kim, Ji Yeon;Woo, Ji Yun;Min, Mun Hong;Yoon, Seok Han;Yeo, Ji Ae;Ghim, Han Do;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.28 no.3
    • /
    • pp.164-174
    • /
    • 2016
  • In this study, dye-encapsulated microcapsules were produced by emulsion polymerization using styrene monomer. The study showed that the average size of microcapsules were $2{\sim}5{\mu}m$ in normal distribution. These microcapsules induced pale yellow(A12) and reddish yellow(B24) color by thermochromic fluoran yellow(dye A) and red(dye B). These microcapsules were changed to dark yellow(A12) and scarlet(B24) color depending on temperature change. The weight of microcapsules decreased by 7% to 11% during the heating ranges from $320^{\circ}C$ to $350^{\circ}C$ implying that the styrene microcapsules had thermal stability upto $300^{\circ}C$.

Effects of Emulsifying Conditions and Alginate Concentration of Encapsulating Ester Compounds on Retention Rate of Core Material in Microcapsules Prepared with Sea Tangle Alginates (다시마 알긴산으로 제조한 에스테르화합물 캡슐에 있어서 내부물질의 잔존량에 미치는 유화조건과 알긴산농도의 영향)

  • You Byeong Jin;Lim Yeong Seon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.654-659
    • /
    • 2002
  • To investigate the effects of preparation conditions of encapsulating ester compounds on retention rate of core material in microcapsules prepared with sea tangle alginate, the amounts of ester compounds migrated gelling solution (1 M $CaCl_2$) and washing water from microcapsules that were prepared by adding kinds of ester compound, by controlling ratios of emulsifier to ester compounds and by differing ratios of alginates (wall material) to ester compounds (core material) were measured. Also the amount of ester compounds retained in microcapsules was measured. The higher weight molecular of ester compounds were, the lower amounts of ester compounds migrated gelling solution and washing water from microcapsules were, But its amounts retained in microcapsules were increased, The changes of ethyl caprylate amount migrated gelling solution and washing water from microcapsules prepared by increasing ratios of emulsifier to ethyl caprylate were little, but its half-lives in microcapsules during storage at 25$^{\circ}C$ were steeply increased. Increasing ratios of wall material to core material, ethyl caprylate amount migrated gelling solution and washing water from microcapsules showed 1.8$\~$$2.0\%$ and 2.9$\~$$3.5\%$ respectively but half-lives of ethyl caprylate retained in alginate microcapsules were increased.

Preparation and Release Behaviors of Poly(ε-caprolactone) Microcapsules Containing SiO2 and Nifedipine (실리카와 니페디핀을 함유한 Poly(ε-caprolactone) 마이크로캡슐의 제조와 방출 거동)

  • Park, Soo-Jin;Lee, Yun-Mok;Han, Mijeong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.588-593
    • /
    • 2005
  • In this study, biodegradable poly(${\varepsilon}$-caprolactone) (PCL) microcapsules containing chemically treated $SiO_2$ and nifedipine were prepared by oil-in-water (O/W) emulsion solvent evaporation method. The microcapsules containing drugs were confirmed using FT-IR spectra. The morphologies of the microcapsules were observed with scanning electron microscope (SEM). The nifedipine's release behaviors from the microcapsules were also examined with UV/vis spectroscopy. As a result, the inclusion of nifedipine into the microcapsules was determined by the presence of nifedipine's specific peak, i.e., C=O stretch vibration at $1682cm^{-1}$. The average particle size of the microcapsules decreased with increasing stirring rate. The nifedipine adsorption capacity and release rate of treated $SiO_2$ that was treated with basic solution decreased because with the increased basicity it lowered the specific surface area of $SiO_2$ and promoted stronger acid-base interactions between $SiO_2$ and nifedipine.

The Effect of the Self-Healing Microcapsules on the Quality and Healing Properties of Cement Composites (자기치유 마이크로캡슐이 시멘트 복합재료의 품질 및 치유특성에 미치는 영향)

  • Kim, Cheol-Gyu;Oh, Sung-Rok;Kim, Ji-Hun;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.389-396
    • /
    • 2021
  • In this paper, it was evaluated that the effect of self-healing microcapsules on the quality and healing properties of cement composites. In the mixing of microcapsules, the plastic viscosity and yield stress of the cement composites decreased due to the particle properties of the microcapsules, and decreased in proportion to the mixing ratio. The table flow showed a tendency to decrease as the core material acted as a stimulant due to the loss of microcapsules, and the compressive strength could be supplemented through unit quantity correction. As a result of evaluating the effect of microcapsule mixing on the healing properties of cement composites, it was found that the unit water flow rate decreased by the healing reaction immediately after crack initiation. When more than 3% of microcapsules were mixed, it was found that there was a healing rate of more than 95% at 7 days of healing age.

Microcapsules Containing Self-Healing Agent with Red Dye (빨간 색소를 함유한 자가치료제 마이크로캡슐)

  • Guang, Yang;Lee, Jong Keun
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.356-361
    • /
    • 2013
  • Microcapsules of two different self-healing agents, 5-ethylidene-2-norbornene (ENB) and ENB with a crosslinker, surrounded by a melamine-urea-formaldehyde shell were manufactured. In this work, a red dye was incorporated into the self-healing agents as a tracer for better visual observations. It revealed that the incorporation of a red dye into self-healing agents did not disturb the formation of microcapsules from the examination of thermal resistance, particle size/size distribution and morphology of the resulting microcapsules. Releasing of self-healing liquid into the induced crack from ruptured microcapsules and filling between crack planes were observed using an optical microscope. Also observed was the reaction of filled healing agent with embedded Grubbs' catalyst in an epoxy coating layer.

Controlled Release of Retinol Containing Microcapsules Prepared by Solvent Evaporation Method (액중건조법으로 제조한 Retinol 함유 마이크로캡슐의 방출 거동)

  • Kim, Se Ra;Shin, Young Jae;Lee, Chun Il;Pyo, Hyeong Bae;Shin, Jae Sup
    • Journal of Adhesion and Interface
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Using biodegradable polycaprolactone, the microcapsules were prepared by solvent evaporation method. Retinol was selected as a core material, which was used as an important ingredient material in cosmetic fields. Poly(vinyl alcohol) was used as a stabilizer. The shape and property of the microcapsules were characterized by scanning electron microscope and differential scanning calorimeter, and the release rate of the microcapsule was measured by UV spectrophotometer. The microcapsules were prepared, changing the concentration of wall material, the stirring rate, and the concentration of stabilizer. Under the optimum condition, the microcapsules were formed, which showd 5~6 um in diameter and got the homogeneous sphere shape.

  • PDF

In Vitro Stability of β-galactosidase Microcapsules

  • Kwak, H.S.;Kwon, S.H.;Lee, J.B.;Ahn, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1808-1812
    • /
    • 2002
  • The present study was carried out to examine the efficiency of microcapsules and a stability of lactase in vitro in the simulated gastric and intestinal conditions. As a coating materials, medium-chain triacylglycerol (MCT) and polyglycerol monostearate (PGMS) were used. The highest efficiency of microencapsulation was found in the ratio of 15:1 as coating to core material with both MCT (91.5%) and PGMS (75.4%). In a subsequent experiment, lactose content was measured to study a microcapsule stability. Lysis of microcapsules made by MCT in simulated gastric fluid was proportionally increased such as 3% in pH 5 and 11% in pH 2 for 20 min incubation. In the case of PGMS microcapsulation, 11-13% of lactose was hydrolyzed at 20 min in all pHs and also very little amount (less than 3%) of lactose was hydrolyzed after 20 min in all pHs. The highest percentages of lactose hydrolysis in MCT and PGMS microcapsules were 68.8 and 60.8% in pHs 7 and 8 during 60 min, respectively. Based on our data, the lactase microcapsules seemed to be stable when they stay in the stomach, and hydrolyzed rapidly in small intestine where the bile acid was excreted.

Characterization of Dicyclopentadiene and 5-Ethylidene-2-norbornene as Self-healing Agents for Polymer Composite and Its Microcapsules

  • Lee, Jong-Keun;Hong, Sun-Ji;Xing Liu;Yoon, Sung-Ho
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.478-483
    • /
    • 2004
  • Two different diene monomers [dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB)] as self-healing agents for polymeric composites were microencapsuled by in situ polymerization of urea and formaldehyde. We obtained plots of the storage modulus (G') and tan $\delta$ as a function of cure time by using dynamic mechanical analysis to investigate the cure behavior of the unreacted self-healing agent mixture in the presence of a catalyst. Glass transition temperatures (T$\_$g/) and exothermic reactions of samples cured for 5 and 120 min in the presence of different amounts of the catalyst were analyzed by differential scanning calorimetry. Of the two dienes, ENB may have advantages as a self-healing agent because, when cured under same conditions as DCPD, it reacts much faster in the presence of a much lower amount of catalyst, has no melting point, and produces a resin that has a higher value of T$\_$g/. Microcapsules containing the healing agent were successfully formed from both of the diene monomers and were characterized by thermogravimetric analysis. Optical microscopy and a particle size analyzer were employed to observe the morphology and size distribution, respectively, of the microcapsules. The microcapsules exhibited similar thermal properties as well as particle shapes and sizes.

Application of novel hybrid bioadsorbent, tannin/chitosan/sericite, for the removal of Pb(II) toxic ion from aqueous solution

  • Choi, Hee-Jeong;Yu, Sung-Whan
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2198-2206
    • /
    • 2018
  • We addressed the development of a novel, low-cost, and high-efficient material from hybrid materials, known as microcapsules. Microcapsules are a composite adsorbent made of a mixture of tannin, sericite and chitosan. The FT-IR analysis showed that the microcapsules contain hydroxyl, carboxyl, carbonyl, and amino groups, which play an important role in the adsorption of heavy metals. The microcapsules were able to remove 99% of Pb(II) in 30 min, and obtained a removal efficiency of more than (13-50)%, compared with the single adsorbents of tannin, chitosan, and sericite. In adsorption kinetic analysis, pseudo-second-order adsorption was more suitable than pseudo-first-order adsorption, and chemical adsorption did not limit the adsorption rate of Pb(II) ion. In isothermal adsorption, Langmuir adsorption was more suitable than Freundlich adsorption, and the maximum Langmuir adsorption capacity was 167.82 (mg/g). Furthermore, desorption and reusability studies, as well as the applicability of the material for wastewater treatment, demonstrated that microcapsules offer a promising hybrid material for the efficient removal of significant water pollutants, i.e., Pb(II) from aqueous solutions.

The Production of Microcapsules containing Cinnamon and Aromatic, Antimicrobial Finishing(Part I) (계피정유를 함유한 마이크로캡슐의 제조 및 방향.항균가공(제1보))

  • 김혜림;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.3
    • /
    • pp.569-576
    • /
    • 2001
  • The purpose of this study is to develop multifunctional fibers by sticking cinnamon microcapsules on cotton knit. The prepolymer was made from urea-formaldehyde for usage of wall materials of microcapsules. The parameters for adoptable condition are 5000rpm of agitation speed, 1% of dispersions concentration according to the observation with SEM and particle analyzer. The Antimicrobial activity of cotton knit treated with capsule was increased greatly and maintained on the laundering cycle.

  • PDF