• 제목/요약/키워드: microbiome & metabolome

검색결과 8건 처리시간 0.023초

A Pilot Study Exploring Temporal Development of Gut Microbiome/Metabolome in Breastfed Neonates during the First Week of Life

  • Imad Awan;Emily Schultz;John D. Sterrett;Lamya'a M. Dawud;Lyanna R. Kessler;Deborah Schoch;Christopher A. Lowry;Lori Feldman-Winter;Sangita Phadtare
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제26권2호
    • /
    • pp.99-115
    • /
    • 2023
  • Purpose: Exclusive breastfeeding promotes gut microbial compositions associated with lower rates of metabolic and autoimmune diseases. Its cessation is implicated in increased microbiome-metabolome discordance, suggesting a vulnerability to dietary changes. Formula supplementation is common within our low-income, ethnic-minority community. We studied exclusively breastfed (EBF) neonates' early microbiome-metabolome coupling in efforts to build foundational knowledge needed to target this inequality. Methods: Maternal surveys and stool samples from seven EBF neonates at first transitional stool (0-24 hours), discharge (30-48 hours), and at first appointment (days 3-5) were collected. Survey included demographics, feeding method, medications, medical history and tobacco and alcohol use. Stool samples were processed for 16S rRNA gene sequencing and lipid analysis by gas chromatography-mass spectrometry. Alpha and beta diversity analyses and Procrustes randomization for associations were carried out. Results: Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the most abundant taxa. Variation in microbiome composition was greater between individuals than within (p=0.001). Palmitic, oleic, stearic, and linoleic acids were the most abundant lipids. Variation in lipid composition was greater between individuals than within (p=0.040). Multivariate composition of the metabolome, but not microbiome, correlated with time (p=0.030). Total lipids, saturated lipids, and unsaturated lipids concentrations increased over time (p=0.012, p=0.008, p=0.023). Alpha diversity did not correlate with time (p=0.403). Microbiome composition was not associated with each samples' metabolome (p=0.450). Conclusion: Neonate gut microbiomes were unique to each neonate; respective metabolome profiles demonstrated generalizable temporal developments. The overall variability suggests potential interplay between influences including maternal breastmilk composition, amount consumed and living environment.

High Plasticity of the Gut Microbiome and Muscle Metabolome of Chinese Mitten Crab (Eriocheir sinensis) in Diverse Environments

  • Chen, Xiaowen;Chen, Haihong;Liu, Qinghua;Ni, Kangda;Ding, Rui;Wang, Jun;Wang, Chenghui
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.240-249
    • /
    • 2021
  • Phenotypic plasticity is a rapid response mechanism that enables organisms to acclimate and survive in changing environments. The Chinese mitten crab (Eriocheir sinensis) survives and thrives in different and even introduced habitats, thereby indicating its high phenotypic plasticity. However, the underpinnings of the high plasticity of E. sinensis have not been comprehensively investigated. In this study, we conducted an integrated gut microbiome and muscle metabolome analysis on E. sinensis collected from three different environments, namely, an artificial pond, Yangcheng Lake, and Yangtze River, to uncover the mechanism of its high phenotypic plasticity. Our study presents three divergent gut microbiotas and muscle metabolic profiles that corresponded to the three environments. The composition and diversity of the core gut microbiota (Proteobacteria, Bacteroidetes, Tenericutes, and Firmicutes) varied among the different environments while the metabolites associated with amino acids, fatty acids, and terpene compounds displayed significantly different concentration levels. The results revealed that the gut microbiome community and muscle metabolome were significantly affected by the habitat environments. Our findings indicate the high phenotypic plasticity in terms of gut microbiome and muscle metabolome of E. sinensis when it faces environmental changes, which would also facilitate its acclimation and adaptation to diverse and even introduced environments.

Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics

  • Robie, Vasquez;Ju Kyoung, Oh;Ji Hoon, Song;Dae-Kyung, Kang
    • Journal of Animal Science and Technology
    • /
    • 제64권4호
    • /
    • pp.671-695
    • /
    • 2022
  • The gastrointestinal tract is a complex ecosystem that contains a large number of microorganisms with different metabolic capacities. Modulation of the gut microbiome can improve the growth and promote health in pigs. Crosstalk between the host, diet, and the gut microbiome can influence the health of the host, potentially through the production of several metabolites with various functions. Short-chain and branched-chain fatty acids, secondary bile acids, polyamines, indoles, and phenolic compounds are metabolites produced by the gut microbiome. The gut microbiome can also produce neurotransmitters (such as γ-aminobutyric acid, catecholamines, and serotonin), their precursors, and vitamins. Several studies in pigs have demonstrated the importance of the gut microbiome and its metabolites in improving growth performance and feed efficiency, alleviating stress, and providing protection from pathogens. The use of probiotics is one of the strategies employed to target the gut microbiome of pigs. Promising results have been published on the use of probiotics in optimizing pig production. This review focuses on the role of gut microbiome-derived metabolites in the performance of pigs and the effects of probiotics on altering the levels of these metabolites.

Translational gut microbiome research for strategies to improve beef cattle production sustainability and meat quality

  • Yasushi Mizoguchi;Le Luo Guan
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.346-359
    • /
    • 2024
  • Advanced and innovative breeding and management of meat-producing animals are needed to address the global food security and sustainability challenges. Beef production is an important industry for securing animal protein resources in the world and meat quality significantly contributes to the economic values and human needs. Improvement of cattle feed efficiency has become an urgent task as it can lower the environmental burden of methane gas emissions and the reduce the consumption of human edible cereal grains. Cattle depend on their symbiotic microbiome and its activity in the rumen and gut to maintain growth and health. Recent developments in high-throughput omics analysis (metagenome, metatranscriptome, metabolome, metaproteome and so on) have made it possible to comprehensively analyze microbiome, hosts and their interactions and to define their roles in affecting cattle biology. In this review, we focus on the relationships among gut microbiome and beef meat quality, feed efficiency, methane emission as well as host genetics in beef cattle, aiming to determine the current knowledge gaps for the development of the strategies to improve the sustainability of beef production.

고지방식이 및 일반식이 백서에 대한 중완·천추·족삼리 침자의 유효성 검증 (The Effect of CV12, ST25, ST36 Acupuncture in General Diet and High Fat Diet Rat)

  • 김경수;김명훈;설재욱;김은주;손홍석;나창수
    • Korean Journal of Acupuncture
    • /
    • 제40권3호
    • /
    • pp.109-127
    • /
    • 2023
  • Objectives : It was conducted to experimentally analyze the effects of acupuncture treatment at CV12, ST25, and ST36 on weight, FBCS, fat metabolism, microbiome, and metabolome changes in the general diet rat and the high-fat diet rat. Methods : It was classified into four groups: general diet & non-treatment group (ND), general diet & acupuncture treatment group (ND+AT), high-fat diet & non-treatment group (HFD), and high-fat diet & acupuncture treatment group (HFD-AT). After acupuncture treatment was performed on CV12, ST25, and ST36, changes in body weight, FBCS, fat metabolism, microbiome, and metabolome were analyzed. Results : Compared to the ND group, acupuncture treatment performed on CV12, ST25, and ST36 in the ND+AT group had no significant effect. Compared to the HFD group, CV12, ST25, and ST36 acupuncture in the HFD+AT group reduced weight, fat weight, inflammatory cytokine IL-6 expression, and lipid droplet accumulation in liver tissue. Acupuncture can promote fat metabolism and relieve inflammatory conditions. Differences in diversity between ND and HFD groups were clear in changes in microbiome, fecal metabolites, and serum metabolites. As a result of some microbiome and metabolites involved in fat decomposition, intestinal lipid absorption, and blood lipid concentration control, such as Intestinimonas, Ruminococcus 1, pyroglutamic acid, tryptophan, and inositol, it was observed that the acupuncture treatment effect was evident in the disease-induced imbalance. Conclusions : Acupuncture treatment performed on CV12, ST25, ST36 clearly observed various regulatory actions on obesity induced by high-fat diet, confirming that the action of acupuncture treatment mainly plays a role in controlling an unbalanced state.

Microbiome-metabolomics analysis of the effects of decreasing dietary crude protein content on goat rumen mictobiota and metabolites

  • Zhu, Wen;Liu, Tianwei;Deng, Jian;Wei, Cong Cong;Zhang, Zi Jun;Wang, Di Ming;Chen, Xing Yong
    • Animal Bioscience
    • /
    • 제35권10호
    • /
    • pp.1535-1544
    • /
    • 2022
  • Objective: The objective of this study was to investigate the effects of decreasing dietary crude protein content on rumen fermentation, mictobiota, and metabolites in goats. Methods: In an 84-day feeding trial, a total of twelve male Anhui white goat kids with initial body weight 15.9±1.13 kg were selected and randomly classified into two groups, feeding a normal crude protein diet (14.8% CP, NCP) or a low crude protein diet (12.0% CP, LCP). At the end of the experimental trial (on day 84), six animals were randomly selected from each group and were slaughtered to collect rumen fluid samples for the analysis of rumen fermentation parameters, microbiome, and metabolome. Results: The concentrations of ammonia-nitrogen, total volatile fatty acid, acetate, and propionate were decreased (p<0.05) in the LCP group in comparison with those in the NCP group. The abundances of genera Prevotella, Campylobacter, Synergistetes, and TG5, which were associated with nitrogen metabolism, were lower (p<0.05) in the LCP group compared with those in the NCP group. The levels of 78 metabolites (74 decreased, 4 increased) in the rumen fluid were altered (p<0.05) by the treatment. Most of the ruminal metabolites that showed decreased levels in the LCP group were substrates for microbial protein synthesis. Metabolic pathway analysis showed that vitamin B6 metabolism was significantly different (p<0.05) in rumen fluid between the two treatments. Conclusion: Decreased dietary protein level inhibited rumen fermentation through microbiome and metabolome shifts in goat kids. These results enhance our understanding of ruminal bacteria and metabolites of goat fed a low protein diet.

최근 반추위 미생물 군집의 응용기술을 이용한 사료효율 개선연구 (Recent Application Technologies of Rumen Microbiome Is the Key to Enhance Feed Fermentation)

  • 이스람 마푸줄;이상석
    • 생명과학회지
    • /
    • 제28권10호
    • /
    • pp.1244-1253
    • /
    • 2018
  • 반추위 속에는 박테리아, 고세균, 프로토조아, 곰팡이 및 바이러스와 같은 다양한 미생물들이 편성의 혐기조건에서 공생하고 있다. 사료의 발효에 중요한 역할을 하고 있는 반추위 미생물은 위내 발효과정에서 에너지 손실에 영향을 주는 메탄의 발생을 제외하면 에너지와 단백질 대사에 필수적인 다양한 휘발성 지방산을 생산한다. 반추위내 미생물의 이용효율을 개선시키기 위해 사료배합비조절, 천연사료첨가제, 생균제첨가 등의 다양한 접근방법들이 사용되고 있다. 최근에 반추위 군집에 대한 메타유전체 또는 메타전사체와 같은 차세대 유전체 해독기술 또는 차세대 시퀀싱 기술의 적용으로 반추위 미생물의 다양성 및 기능에 대한 이해가 크게 증가하였다. 특히 메타단백질체와 메타대사체는 반추위 생태계의 복잡한 미생물네트워크에 대한 더 깊은 통찰력을 제공할 뿐만 아니라, 다양한 반추가축용 사료에 대한 반응을 제공함으로서 생산효율을 개선시키는데 기여하였다. 본 논문에서는 반추위내 사료의 발효와 이용을 향상시키기 위한 메타오믹스 기술, 즉, 메타유전체, 메타전사체, 메타단백질체 및 메타대사체의 최신 응용기술을 요약하고자 한다.

4차 산업혁명 시대 맞춤형 식이 (Personalized Diet in the Era of the 4th Industrial Revolution)

  • 박수현;박재호
    • 한국식생활문화학회지
    • /
    • 제38권4호
    • /
    • pp.185-190
    • /
    • 2023
  • This paper elucidates the novel direction of food research in the era of the 4th Industrial Revolution characterized by personalized approaches. Since conventional approaches for identifying novel food materials for health benefits are expensive and time-consuming, there is a need to shift towards AI-based approaches which offer more efficient and cost-effective methods, thus accelerating progress in the field of food science. However, relevant research papers in this field present several challenges such as regional and ethnic differences and lack of standardized data. To tackle this problem, our study proposes to address the issues by acquiring and normalizing food and biological big data. In addition, the paper demonstrates the association between heath status and biological big data such as metabolome, epigenome, and microbiome for personalized healthcare. Through the integration of food-health-bio data with AI technologies, we propose solutions for personalized healthcare that are both effective and validated.