Microbiome-metabolomics analysis of the effects of decreasing dietary crude protein content on goat rumen mictobiota and metabolites |
Zhu, Wen
(College of Animal Science and Technology, Anhui Agricultural University)
Liu, Tianwei (College of Animal Science and Technology, Anhui Agricultural University) Deng, Jian (College of Animal Science and Technology, Anhui Agricultural University) Wei, Cong Cong (College of Animal Science and Technology, Anhui Agricultural University) Zhang, Zi Jun (College of Animal Science and Technology, Anhui Agricultural University) Wang, Di Ming (Key Laboratory of Molecular Animal Nutirtion, Ministry of Education, Zhejiang University) Chen, Xing Yong (College of Animal Science and Technology, Anhui Agricultural University) |
1 | National Research Council. Nutrient requirements of dairy cattle. 7th rev. ed. National Academy of Sciences: Washington, DC, USA: National Academies Press; 2001. |
2 | Calsamiglia S, Ferret A, Reynolds CK, Kristensen NB, van Vuuren AM. Strategies for optimizing nitrogen use by ruminants. Animal 2010;4:1184-96. https://doi.org/10.1017/s1751731110000911 DOI |
3 | Han X, Yang Y, Yan H, Wang X, Qu L, Chen Y. Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA sequencing. PLoS One 2015;10:e0117811. https://doi.org/10.1371/journal.pone.0117811 DOI |
4 | Zhang XX, Li YX, Tang ZR, et al. Reducing protein content in the diet of growing goats: implications for nitrogen balance, intestinal nutrient digestion and absorption, and rumen microbiota. Animal 2020;14:2063-73. https://doi.org/10.1017/S1751731120000890 DOI |
5 | Chanthakhoun V, Wanapat M, Berg J. Level of crude protein in concentrate supplements influenced rumen characteristics, microbial protein synthesis and digestibility in swamp buffaloes (bubalus bubalis). Livest Sci 2012;144:197-204. https://doi.org/10.1016/j.livsci.2011.11.011 DOI |
6 | Remond B, Souday E, Ouany JP. In vitro and in vivo fermentation of glycerol by rumen microbes. Anim Feed Sci Technol 1993;41:121-32. https://doi.org/10.1016/0377-8401(93)901 18-4 DOI |
7 | Gholizadeh M, Fayazi J, Asgari Y, Zali H, Kaderali L. Reconstruction and analysis of cattle metabolic networks in normal and acidosis rumen tissue. Animal 2020;10:469. https://doi.org/10.3390/ani10030469 DOI |
8 | Xia C, Rahman MAU, Yang H, et al. Effect of increased dietary crude protein levels on production performance, nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls. Asian-Australas J Anim Sci 2018;31: 1643-53. https://doi.org/10.5713/ajas.18.0125 DOI |
9 | Kelsay J, Baysal A, Linkswiler H. Effect of vitamin B6 depletion on the pyridoxal, pyridoxamine and pyridoxine content of the blood and urine of men. J Nutr 1968;94:490-4. https://doi.org/10.1093/jn/94.4.490 DOI |
10 | Kohn RA, Dinneen MM, Russek-Cohen E. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J Anim Sci 2005;83:879-89. https://doi.org/10.2527/2005.834879x DOI |
11 | Wang Y, Cao P, Wang L, Zhao Z, Chen Y, Yang Y. Bacterial community diversity associated with different levels of dietary nutrition in the rumen of sheep. Appl Microbiol Biotechnol 2017;101:3717-28. https://doi.org/10.1007/s00253-017-8144-5 DOI |
12 | Wang B, Ma MP, Diao QY, Tu Y. Saponin-induced shifts in the rumen microbiome and metabolome of young cattle. Front Microbiol 2019;10:356. https://doi.org/10.3389/fmicb.2019.00356 DOI |
13 | Agarwal N, Kamra DN, Chaudhary LC. Rumen microbial ecosystem of domesticated ruminants. In: Puniya A, Singh R, Kamra D, editors. Rumen microbiology: From evolution to revolution, New Delhi, India: Springer Press; 2015. https://doi.org/10.1007/978-81-322-2401-3_2 DOI |
14 | Clark JH, Davis CL. Some aspects of feeding high producing dairy cows. J Dairy Sci 1980;63:873-85. https://doi. org/10.3168/jds.s0022-0302(80)83021-9 DOI |
15 | National Research Council. Nutrient requirements of small ruminants, sheep, goats, cervids, and new world camelids. Washington, DC, USA: National Academy Press; 2007. |
16 | Zhou K, Bao Y, Zhao GY. Effects of dietary crude protein and tannic acid on rumen fermentation, rumen microbiota and nutrient digestion in beef cattle. Arch Anim Nutr 2019;73: 30-43. https://doi.org/10.1080/1745039x.2018.1545502 DOI |
17 | Mann E, Wetzels Wagner SUM, Zebeli Q, Schmitz-Esser S. Metatranscriptome sequencing reveals insights into the gene expression and functional potential of rumen wall bacteria. Front Microbiol 2018;9:43. https://doi.org/10.3389/fmicb.2018.00043 DOI |
18 | Zhu W, Su Z, Xu W, et al. Garlic skin induces shifts in the rumen microbiome and metabolome of fattening lambs. Animal 2021;15:100216. https://doi.org/10.21203/rs.3.rs57466/v1 DOI |
19 | Muscher AS, Wilkens MR, Mrochen N, Schroder B, Breves G, Huber K. Ex vivo intestinal studies on calcium and phosphate transport in growing goats fed a reduced nitrogen diet. Br J Nutr 2012;108:628-37. https://doi.org/10.1017/S0007114511005976 DOI |
20 | Zhu W, Xu W, Wei CC, Zhang ZJ, Jiang CC, Chen XY. Effects of decreasing dietary crude protein level on growth performance, nutrient digestion, serum metabolites, and nitrogen utilization in growing goat kids (Capra. hircus). Animals 2020;10:151. https://doi.org/1c0.3390/ani10010151 DOI |
21 | Sun HZ, Wang DM, Wang B, et al. Metabolomics of four biofluids from dairy cows: potential bimarkers for milk production and quality. J Proteome Res 2015;14:1287-98. https://doi.org/10.1021/pr501305g DOI |
22 | Garrido-Franco M. Pyridoxine 5'-phosphate synthase: de novo synthesis of vitamin B6 and beyond. Biochim Biophys Acta Proteins Proteom 2003;1647:92-7. https://doi.org/10.1016/s1570-9639(03)00065-7 DOI |
23 | Meale SJ, Morgavi DP, Cassar-Malek I, et al. Exploration of biological markers of feed efficiency in young bulls. J Agric Food Chem 2017;65:9817-27. https://doi.org/10.1021/acs.jafc.7b03503 DOI |
24 | Hua CF, Tian J, Tian P, et al. Feeding a high concentration diet induces unhealthy alterations in the composition and metabolism of ruminal microbiota and host response in a goat model. Front Microbiol 2017;8:138. https://doi.org/10.3389/fmicb.2017.00138 DOI |
25 | Gao J, Sun YF, Bao Y, Zhou K, Kong DH, Zhao GY. Effects of different levels of rapeseed cake containing high glucosinolates in steer ration on rumen fermentation, nutrient digestibility and the rumen microbial community. Br J Nutr 2021;125:266-74. https://doi.org/10.1017/S0007114520002767 DOI |
26 | Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science 2012;336:1262-7. https://doi.org/10.1126/science.1223813 DOI |
27 | Hu WL, Liu JX, Ye JA, Wu YM, Guo YQ. Effect of tea saponin on rumen fermentation in vitro. Anim Feed Sci Technol 2005;120:333-9. https://doi.org/10.1016/j.anifeedsci.2005.02.029 DOI |
28 | Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clin Chem 1962;8:130-2. https://doi.org/10.1093/clinchem/8.2.130 DOI |
29 | Zhou M, Peng YJ, Chen YH, et al. Assessment of microbiome changes after rumen transfaunation: implications on improving feed efficiency in beef cattle. Microbiome 2018;6:62. https://doi.org/10.1186/s40168-018-0447-y DOI |