Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.10.1244

Recent Application Technologies of Rumen Microbiome Is the Key to Enhance Feed Fermentation  

Islam, Mahfuzul (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University)
Lee, Sang-Suk (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University)
Publication Information
Journal of Life Science / v.28, no.10, 2018 , pp. 1244-1253 More about this Journal
Abstract
Rumen microbiome consists of a wide variety of microorganisms, such as bacteria, archaea, protozoa, fungi, and viruses, that are in a symbiotic relationship in a strict anaerobic environment in the rumen. These rumen microbiome, a vital maker, play a significant role in feed fermentation within the rumen and produce different volatile fatty acids (VFAs). VFAs are essential for energy metabolism and protein synthesis of the host animal, even though emission of methane gas after feed fermentation is considered a negative indicator of loss of dietary energy of the host animal. To improve rumen microbial efficiency, a variety of approaches, such as feed formulation, the addition of natural feed additives, dietary feed-microbes, etc., have taken to increase ruminant performance. Recently with the application of high-throughput sequencing or next-generation sequencing technologies, especially for metagenomics and metatranscriptomics of rumen microbiomes, our understanding of rumen microbial diversity and function has significantly increased. The metaproteome and metabolome provide deeper insights into the complicated microbial network of the rumen ecosystem and its response to different ruminant diets to improve efficiency in animal production. This review summarized some recent advances of rumen microbiome techniques, especially "meta-omics," viz. metagenomic, metatranscriptomic, metaproteomic, and metabolomic techniques to increase feed fermentation and utilization in ruminants.
Keywords
Feed fermentation; metaomics; next-generation sequencing; rumen microbiome;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Vibhute, V. M., Shelke, R. R., Chavan, S. D. and Nage, S. P. 2011. Effect of probiotics supplementation on the performance of lactating crossbred cows. Vet. World 4, 557-561.
2 Wallace, R. J., McKain, N., Broderick, G. A., Rode, L. M., Walker, N. D., Newbold, C. J. and Kopecny, J. 1997. Peptidases of the rumen bacterium, Prevotella ruminicola. Anaerobe 3, 35-42.   DOI
3 Wallace, R. J., Rooke, J. A., McKain, N., Duthie, C. A., Hyslop, J. J., Ross, D. W., Waterhouse, A., Watson, M. and Roehe, R. 2015. The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics 16, 839.   DOI
4 Wanapat, M. 2000. Rumen manipulation to increase the efficient use of local feed resources and productivity of ruminants in the tropics. Asian-Aust. J. Anim. Sci. 13, 59-67.
5 Weimer, P. J. 1996. Why don't ruminal bacteria digest cellulose faster? J. Dairy Sci. 79, 1496-1502.   DOI
6 Chaucheyras-Durand, F. and Ossa, F. 2014. Review: The rumen microbiome: composition, abundance, diversity, and new investigative tools. Prof. Anim. Sci. 30, 1-12.   DOI
7 Chen, Y. B., Lan, D. L., Tangi, C., Yang, X. N. and Li, J. 2015. Effect of DNA extraction methods on the apparent structure of yak rumen microbial communities as revealed by 16S rDNA sequencing. Pol. J. Microbiol. 64, 29-36.
8 Chiquette, J., Talbot, G., Markwell, F., Nili, N. and Forster, R. J. 2007. Repeated ruminal dosing of Ruminococcus flavefaciens NJ along with a probiotic mixture in forage or concentrate- fed dairy cows: effect on ruminal fermentation, cellulolytic populations and in sacco digestibility. Can. J. Anim. Sci. 87, 237-249.
9 Coleman, G. S., Laurie, J. I., Bailey, J. E. and Holdgate, S. A. 1976. The cultivation of cellulolytic protozoa isolated from the rumen. J. Gen. Microbiol. 95, 144-150.   DOI
10 Comtet-Marre, S., Parisot, N., Lepercq, P., Chaucheyras- Durand, F., Mosoni, P., Peyretaillade, E., Bayat, A. R., Shingfield, K. J., Peyret, P. and Forano, E. 2017. Metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet. Front. Microbiol. 8, 67.
11 Cotta, M. A. 1988. Amylolytic activity of selected species of ruminal bacteria. Appl. Environ. Microbiol. 54, 772-776.
12 Cotta, M. A. 1992. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch. Appl. Environ. Microbiol. 58, 48-54.
13 Dashtban, M., Schraft, H. and Qin, W. 2009. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5, 578-595.
14 Iqbal, M. W., Zhang, Q., Yang, Y., Zou, C., Li, L., Liang, X., Wei, S. and Lin, B. 2018. Ruminal fermentation and microbial community differently influenced by four typical subtropical forages in vitro. Anim. Nutr. 4, 100-108.   DOI
15 Mann, E., Wetzels, S. U., Wagner, M., Zebeli, Q. and Schmitz-Esser, S. 2018. Metatranscriptome sequencing reveals insights into the gene expression and functional potential of rumen wall bacteria. Front. Microbiol. 9, 43.
16 Mao, S. Y., Huo, W. J. and Zhu, W. Y. 2014. Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environ. Microbiol. 18, 525-541.
17 Whiteley, A. S., Jenkins, S., Waite, I., Kresoje, N., Payne, H., Mullan, B., Allcock, R. and O'Donnell, A. 2012. Microbial 16S rRNA ion tag and community metagenome sequencing using the ion torrent (PGM) platform. J. Microbiol. Methods 91, 80-88.   DOI
18 Wina, E., Muetzel, S. and Becker, K. 2005. The impact of saponins or saponin-containing plant on ruminant production-a review. J. Agric. Food Chem. 53, 8093-8105.   DOI
19 Yanagita, K., Kamagata, Y., Kawaharasaki, M., Suzuki, T., Nakamura, Y. and Minato, H. 2000. Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci. Biotechnol. Biochem. 64, 1737-1742.   DOI
20 Counotte, G. and Prins, R. 1981. Regulation of lactate metabolism in the rumen. Vet. Res. Commun. 5, 101-115.
21 Jatkauskas, J. and Vrotniakien, V. 2007. Effect of L-plantarum, Pediococcus acidilactici, Enterococcus faecium and L-lactis microbial supplementation of grass silage on the fermentation characteristics in the rumen of dairy cows. Vet. Zootec. 40, 29-34.
22 Ivan, M., Neill, L. and Entz, T. 2000. Ruminal fermentation and duodenal flow following progressive inoculations of fauna-free wethers with major individual species of ciliate protozoa or total fauna. J. Anim. Sci. 78, 750-759.
23 Ivan, M., Petit, H. V., Chiquette, J. and Wright, A. D. 2012. Rumen fermentation and microbial population in lactating dairy cows receiving diets containing oilseeds rich in C-18 fatty acids. Br. J. Nutr. 31, 1-8.
24 Jami, E., White, B. A. and Mizrahi, I. 2014. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 9, e85423.   DOI
25 Jeong, C. D., Mamuad, L. L., Kim, S. H., Choi, Y. J., Soriano, A. P., Cho, K. K., Jeon, C. O., Lee, S. S. and Lee, S. S. 2015. Effect of soybean meal and soluble starch on biogenic amine production and microbial diversity using in vitro rumen fermentation. Asian Australas. J. Anim. Sci. 28, 50-57.
26 Jiao, J., Lu, Q., Tan, Z., Guan, L., Zhou, C., Tang, S. and Han, X. 2014. In vitro evaluation of effects of gut region and fiber structure on the intestinal dominant bacterial diversity and functional bacterial species. Anaerobe 28, 168-177.   DOI
27 Iqbal, M. W., Zhang, Q., Yang, Y., Li, L., Zou, C., Huang, C. and Lin, B. 2018. J. Appl. Anim. Res. 46, 740-748.   DOI
28 McCann, J. C., Wickersham, T. A. and Loor, J. J. 2014. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform. Biol. Insights 8, 109-125.
29 Martin, S. C. 1998. Manipulation of ruminal fermentation with organic acids: a review. J. Anim. Sci. 76, 3123-3132.
30 McAllister, T. A., Rode, L. M., Major, D. J., Cheng, K. J. and Buchanan-Smith, J. G. 1990. Effect of ruminal microbial colonization on cereal grain digestion. Can. J. Anim. Sci. 70, 571-579.
31 McSweeney, C. and Mackie, R. 2012. Microorganisms and ruminant digestion: state of knowledge, trends and future prospects. Commission on Genetic Resources for Food and Agriculture. Background study paper No. 61. Food Agric. Org. United Nations, Rome, Italy.
32 Michalet-Doreau, B., Fernandez, I. and Fonty, G. 2002. A comparison of enzymatic and molecular approaches to characterize the cellulolytic microbial ecosystems of the rumen and the cecum. J. Anim. Sci. 80, 790-796.
33 Min, B. R., Pinchak, W. E., Anderson, R. C. and Hume, M. E., 2016. In vitro bacterial growth and in vivo rumen microbiota populations associated with potential blot dynamics in winter wheat. J. Anim. Sci. 84, 2546-2552.
34 Biswas, A. A., Lee, S. S., Mamuad, L. L., Kim, S. H., Choi, Y. J., Lee, C., Lee, K., Bae, G. S. and Lee, S. S. 2018. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets. Anim. Sci. J. 89, 114-121.   DOI
35 Bao, L., Huang, Q., Chang, L., Sun, Q., Zhou, J. and Lu, H. 2012. Cloning and characterization of two ${\beta}$-glucosidase/xylosidase enzymes from yak rumen metagenome. Appl. Biochem. Biotechnol. 166, 72-86.   DOI
36 Beloqui, A., Pita, M., Polaina, J., Martinez-Arias, A., Golyshina, O. V., Zumarraga, M., Yakimov, M. M., Garcia-Arellano, H., Alcalde, M., Fernandez, V. M., Elborough, K., Andreu, J. M., Ballesteros, A., Plou, F. J., Timmis, K. N., Ferrer, M. and Golyshin, P. N. 2006. Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J. Biol. Chem. 281, 22933-22942.
37 Zened, A., Combes, S., Cauquil, L. Mariette, J., Klopp, C., Bouchez, O., Troegeler-Meynadier, A. and Enjalbert, F. 2013. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol. Ecol. 83, 504-514.   DOI
38 Zhou, M., Peng, Y. J., Chen, Y., Klinger, C. M., Oba, M., Liu, J. X. and Guan, L. L. 2018. Assessment of microbiome changes after rumen transfaunation: implications on improving feed efficiency in beef cattle. Microbiome 6, 62.   DOI
39 Berg, M. M, E., Yeoman, C. J., Chia, N. Tringe, S. G., Angly, F. E., Edwards, R. A., Flint, H. J., Lamed, R., Bayer, E. A. and White, B. A. 2012. Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ. Microbiol. 14, 207-227.   DOI
40 Bergman, E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567-590.
41 Biswasa, A. A., Lee, S. S., Mamuad, L. L., Kim, S. H., Choi, Y. J., Bae, G. S., Lee, K., Sung, H. G. and Lee, S. S. 2016. Use of lysozyme as a feed additive on in vitro rumen fermentation and methane emission. Asian Australas. J. Anim. Sci. 29, 1601-1607.
42 Brown, M. S., Ponce, C. H. and Pulikanti, R. 2006. Adaptation of beef cattle to high-concentrate diets: performance and ruminal metabolism. J. Anim. Sci. 84, 25-33.   DOI
43 Carro, M. D. and Ranilla, M. J. 2003. Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen microorganisms in vitro. Br. J. Nutr. 90, 617-623.   DOI
44 Elghandour, M. M. Y., Salem, A. Z. M., Castaneda, J. S. M., Camacho, L. M., Kholif, A. E. and Chagoya, J. C. V. 2015. Direct-fed microbes: a tool for improving the utilization of low-quality roughages in ruminants. J. Integr. Agric. 14, 526-533.
45 Minato, H., Endo, A., Higuchi, M., Comoto, Y. and Vemura, T. 1966. Ecological treatise on the rumen fermentation. I. The fractionation of bacteria attached to the rumen digesta solids. J. Gen. Appl. Microbiol. 12, 39-52.   DOI
46 Deusch, S. and Seifert, J. 2015. Catching the tip of the iceberg- evaluation of sample preparation protocols for the metaproteomic studies of the rumen microbiota. Proteomics 15, 1-6.   DOI
47 Deusch, S., Camarinha-Silva, A., Conrad, J., Beifuss, U., Rodehutscord, M. and Seifert, J. 2017. A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments. Front. Microbiol. 8, 1605.   DOI
48 Driscoll, C. B., Otten, T. G., Brown, N. M. and Dreher, T. W. 2017. Towards long-read metagenomics: complete assembly of three novel genomes from bacteria dependent on a diazotrophic cyanobacterium in a freshwater lake co-culture. Stand. Genomic Sci. 12, 9.   DOI
49 Duskova, D. and Marounek, M. 2001. Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rumen bacterium Lachnospira multiparus. Lett. Appl. Microbiol. 33, 159-163.
50 Joch, M., Mrazek, J., Skrivanova, E., Cermak, L. and Marounek, M. 2018. Effects of pure plant secondary metabolites on methane production, rumen fermentation and rumen bacteria populations in vitro. J. Anim. Physiol. Anim. Nutr. 102, 869-881.   DOI
51 Nagaraja, T. G., Newbold, C. J., Van Nevel, C. J. and Demeyer, D. I. 2012. Manipulation of rumen fermentation. pp. 523-600. In: Hobson, P. N. and Stewart, C. S. (eds), The rumen microbial ecosystem. Blackie Academic and Professional, London.
52 Moniello, G., Richardson, A. J., Duncan, S. H. and Stewart, C. S. 1996. Effects of coumarin and sparteine on attachment to cellulose and cellulolysis by Neocallimastix frontalis RE1. Appl. Environ. Microbiol. 62, 4666-4668.
53 Myer, P. R., Freetly, H. C., Wells, J. E., Smith, T. P. L. and Kuehn, L. A. 2017. Analysis of the gut bacterial communities in beef cattle and their association with feed intake, growth, and efficiency. J. Anim. Sci. 95, 3215-3224.
54 Myer, P. R., Smith, T. P. L., Wells, J. E., Kuehn, L. A. and Freetly, H. C. 2015. Rumen Microbiome from Steers Differing in Feed Efficiency. PLoS One 10, e0129174.   DOI
55 Newbold, C. J., Lopez, S., Nelson, N., Ouda, J. O., Wallace, R. J. and Moss, A. R. 2005. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br. J. Nutr. 94, 27-35.   DOI
56 O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007-4021.
57 Oeztuerk, H., Schroeder, B., Beyerbach, M. and Breves, G. 2005. Influence of living and autoclaved yeasts of Saccharomyces boulardii on in vitro ruminal microbial metabolism. J. Dairy Sci. 88, 2594-2600.   DOI
58 Forsberg, C. W., Lovelock, L. K., Krumholz, L. and Buchanan- Smith, J. G. 1984. Protease activities of rumen protozoa. Appl. Environ. Microbiol. 47,101-110.
59 Ezema, C. 2013. Probiotics in animal production: a review. J. Vet. Med. Anim. Health 5, 308-316.
60 FAO/WHO. 2001. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, Argentina: Food and Agriculture Organization of the United Nations and World Health Organization. p. 30.
61 Kim, S. H., Mamuad, L. L., Kim, D. W., Kim, S. K. and Lee, S. S. 2016. Fumarate reductase-producing enterococci reduce methane production in rumen fermentation in vitro. J. Microbiol. Biotechnol. 26, 558-566.
62 Johnson, D. E. and Ward, G. M. 1996. Estimates of animal methane emissions. Environ. Monit. Assess. 42, 113-141.   DOI
63 Khan, R. U., Naz, S., Dhama, K., Karthik, K., Tiwari, R., Abdelrahman, M. M., Alhidary, I. A. and Zahoor, A. 2016. Direct-fed microbial: beneficial applications, modes of action and prospects as a safe tool for enhancing ruminant production and safeguarding health. Int. J. Pharm. 12, 220-231.
64 Kim, S. H., Mamuad, L. L., Jeong, C. D., Choi, Y. J., Lee, S. S., Ko, J. Y. and Lee, S. S. 2013. In vitro evaluation of different feeds for their potential to generate methane and change methanogen diversity. Asian Australas. J. Anim. Sci. 26, 1698-1707.
65 Kim, S. H., Mamuad, L. L., Kim, E. J., Sung, H. G., Bae, G. S., Cho, K. K., Lee, C. and Lee, S. S. 2018. Effect of different concentrate diet levels on rumen fluid inoculum used for determination of in vitro rumen fermentation, methane concentration, and methanogen abundance and diversity, Ital. J. Anim. Sci. 17, 359-367.
66 Kittelmann, S., Seedorf, H., Walters, W. A., Clemente, J. C., Knight, R., Gordon J. I. and Janssen, P. H. 2013. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8, e47879.   DOI
67 Rajas-Roman, L. A., Castro-Perez, B. I., Estrada-Angulo, A., Angulo-Montoya, C. and Yocupicio-Rocha, J. A. et al. 2017. Influence of long-term supplementation of tannins on growth performance, dietary net energy and carcass characteristics: finishing lambs. Small Rumin. Res. 153, 137-141.   DOI
68 Oulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., Arvanitidis, C. and Iliopoulos, I. 2015. Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform. Biol. Insights 9, 75-88.
69 Pitta, D. W., Indugu, N., Kumar, S., Vecchiarelli, B., Sinha, R., Baker, L. D., Bhukya, B. and Ferguson, J. D. 2016. Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows. Anaerobe 38, 50-60.   DOI
70 Prive, F., Newbold, C. J., Kaderbhai, N. N., Girdwood, S. G., Golyshina, O. V., Golyshin, P. N., Scollan, N. D. and Huws, S. A. 2015. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome. Appl. Microbiol. Biotechnol. PMID: 25575887.
71 Rey, M., Enjalbert, F., Combes, S., Cauquil, L., Bouchez, O. and Monteils, V. 2014. Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential. J. Appl. Microbiol. 116, 245-257.
72 Rezaeian, M., Beakes, G. W. and Parker, D. S. 2004. Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep. Mycol. Res. 108, 1227-1233.   DOI
73 Rivera-Mendez, C., Plascencia, A., Torrentera, N. and Zinn, R. A. 2017. Effect of level and source of supplemental tannin on growth performance of streers during the late finishing phase. J. Appl. Anim. Res. 45, 199-203.   DOI
74 Gharechahi, J. and Salekdeh, G. H. 2018. A metagenomic analysis of the camel rumen's microbiome identifies the major microbes responsible for lignocelluloses degradation and fermentation. Biotechnol. Biofuels 11, 216.   DOI
75 Fouts, D. E., Szpakowski, S., Purushe, J., Torralba, M., Waterman, R. C., MacNeil, M. D., Alexander, L. J. and Nelson, K. E. 2012. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS One 7, e48289.   DOI
76 Fuentes, M. C., Calsamiglia, S., Cardozo, P. W. and Vlaeminck, B. 2009. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. J. Dairy Sci. 92, 4456-4466.
77 Fuguang, X., Xuemei, N., Xiaohua, P., Shanshan, Z., Linshu, J. and Xiong, B. 2017. Application of multi omics technologies in ruminants research. Dairy Vet. Sci. J. 1, 555563.
78 Golder, H. M., Denman, S., McSweeney, C. and Lean, I. J. 2016 Metabolome and microbiome associations after a grain and sugar challenge. J. Anim. Sci. 94, 783-784.
79 Golder, H. M., Thomson, J., Denman, S., McSweeney, C. and Lean, I. J. 2016. Markers associated with metabolome, and microbiome measures in a grain and sugar challenge in dairy heifers. J. Anim. Sci. 94, 194.
80 Rosenberg, E. and Zilber-Rosenberg, I. 2016. Interaction between the microbiome and diet: the hologenome concept. J. Nutri. Food Sci. 6, 545.
81 Gonzaleza, A. R. C., Barrazab, M. E., B., Viverosb, J. D. and Martinez, A. C. 2014. Rumen microorganisms and fermentation. Arch. Med. Vet. 46, 349-361.
82 Hart, E. H., Creevey, C. J., Hitch, T. and Kingston-Smith, A. H. 2018. Meta-proteomics of rumen microbiota indicates niche compartmentalisation and functional dominance in a limited number of metabolic pathways between abundant bacteria. Sci. Rep. 8, 10504.   DOI
83 Shabat, S. K., Sasson, G., Doron-Faigenboim, A., Durman, T., Yaacoby, S., Berg M. M. E., White, B. A., Shterzer, N. and Mizrahi, I. 2016. Specific microbiome-dependent mech anisms underlie the energy harvest efficiency of ruminants. ISME J. 10, 2958-2972.   DOI
84 Saleem, F., Ametaj, B. N., Bouatra, S., Mandal, R., Zebeli, Q., Dunn, S. M. and Wishart, D. S. 2012. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J. Dairy Sci. 95, 6606-6623.   DOI
85 Saleem, F., Bouatra, S., Guo, A. C., Psychogios, N., Mandal, R., Dunn, S. M., Ametaj, B. N. and Wishart, D. S. 2013. The bovine ruminal fluid metabolome. Metabolomics 9, 360-378.   DOI
86 Seo, J. K., Kim, S. W., Kim, M. H., Upadhaya, S. D., Kam, D. K. and Ha, J. K. 2010. Direct-fed microbials for ruminant animals. Asian Australas. J. Anim. Sci. 23, 1657-1667.   DOI
87 Singh, K. M., Jakhesara, S. J., Koringa, P. G., Rank, D. N. and Joshi, C. G. 2012. Metagenomic analysis of virulenceassociated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis). Gene 507, 146-151.   DOI
88 Soriano, A. P., Mamuad, L. L., Kim, S. H., Choi, Y. J., Jeong, C. D., Bae, G. S., Chang, M. B. and Lee, S. S. 2014. Effect of Lactobacillus mucosae on in vitro rumen fermentation characteristics of dried brewers grain, methane production and bacterial diversity. Asian Australas. J. Anim. Sci. 27, 562-1570.
89 Hernandez-Sanabria, E., Guan, L. L., Goonewardene, L. A., Li, M., Mujibi, D. F., Stothard, P., Moore, S. S., Leon-Quintero, M. C. 2010. Correlation of particular bacterial PCR-denaturing gradient gel electrophoresis patterns with bovine ruminal fermentation parameters and feed efficiency traits. Appl. Environ. Microbiol. 76, 6338-6350.   DOI
90 Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Janssen, P. H. and Global Rumen Census Collaborators. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567.   DOI
91 Hodrova, B., Kopecny, J. and Petr, O. 1995. Interaction of the rumen fungus Orpinomyces joyonii with Megasphaera elsdenii and Eubacterium limosum. Lett. Appl. Microbiol. 21, 34-37.   DOI
92 Li, F., Zhou, M., Ominski, K. and Guan, L. L. 2016. Does the rumen microbiome play a role in feed efficiency of beef cattle? J. Anim. Sci. 94, 44-48.
93 Lewis, K. A., Tzilivakis, J., Green, A., Warner, D. J., Stedman, A. and Naseby, D. 2013. Review of substances/agents that have direct beneficial effect on the environment: mode of action and assessment of efficacy. EFSA supp. EN-440.
94 Li, F. and Guan, L. L. 2017. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl. Environ. Microbiol. 83, e00061-17.
95 Li, F., Neves, A. L. A., Ghoshal, B. and Guan, L. L. 2018. Symposium review: Mining metagenomic and metatranscriptomic data for clues about microbial metabolic functions in ruminants. J. Dairy Sci. 101, 5605-5618.   DOI
96 Hu, W., Wu, Y., Liu, J., Guo, Y. and Ye, J. 2005. Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluiud. J. Zhejiang Univ. Sci. B. 6, 787-792.
97 Tom, W., Judy, J. V., Kononoff, P. J. and Fernando, S. C. 2016. 16S rRNA bacterial sequences suggest dietary intervention can be used to change microbial community structure to reduce methane emission in holstein dairy cattle. J. Anim. Sci. 94, 794.
98 Tsai, Y. C., Conlan, S., Deming, C., Segre, J. A., Kong, H. H., Korlach, J. and Oh, J. 2016. Resolving the complexity of human skin metagenomes using single-molecule sequencing. MBio 7, e01948-15.
99 Hook, S. E., Wright, A. D. and McBride, B. W. 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea 30, 945785.
100 Hristov, A. N., Ivan, M., Neill, L. and McAllister, T. A. 2003. Evaluation of several potential bioactive agents for reducing protozoal activity in vitro. Anim. Feed Sci. Technol. 105, 163-184.
101 Hungate, R. E. 1967. Hydrogen as an intermediate in the rumen fermentation. Archiv. Mikrobiol. 59, 158-164.   DOI
102 IPCC (Intergovernmental Panel on Climate Change. Climate change). 2014. Synthesis report 2014.
103 IPCC (Intergovernmental Panel on Climate Change. Climate change). 2006. Guidelines for National Greenhouse Gas Inventories. Agriculture, Forestry and Other Land Use. V. 4.
104 Mamuad, L, Kim, S. H., Jeong, C. D., Choi, Y. J., Jeon, C. O. and Lee, S. S. 2014. Effect of Fumarate Reducing Bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity. J. Microbiol. 52, 120-128.   DOI
105 Liu, K., Wang, J., Bu, D., Zhao, S., McSweeney, C., Yu, P. and Li, D. 2009. Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen. Biochem. Biophys. Res. Commun. 385, 605-611.
106 Lopez, S., Valdez, C., Newbold, C. J. and Wallace, R. J. 1999. Influence of sodium fumarate addition on rumen fermentation in vitro. Br. J. Nutri. 81, 59-64.   DOI
107 Malmuthuge, N., Griebel, P. J. and Guan, L. L. 2014. Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves. Appl. Environ. Microbiol. 80, 2021-2028.   DOI